Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Double coset separability of abelian subgroups of hyperbolic $ n$-orbifold groups


Author: Emily Hamilton
Journal: Proc. Amer. Math. Soc. 144 (2016), 2327-2336
MSC (2010): Primary 20E26, 57MO5
DOI: https://doi.org/10.1090/proc/12904
Published electronically: October 20, 2015
MathSciNet review: 3477050
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A subset $ X$ of a group $ G$ is said to be separable if it is closed in the profinite topology. Let $ M = \mathbb{H}^n / \Gamma $ be a closed hyperbolic orbifold of dimension $ n \geq 2$. We show that if $ H$ and $ K$ are abelian subgroups of $ \Gamma $ and $ g \in \Gamma $, then the double coset $ HgK$ is separable in $ \Gamma $. We generalize this result to cocompact lattices in linear, semisimple Lie groups of (real) rank one.


References [Enhancements On Off] (What's this?)

  • [1] Ian Agol, The virtual Haken conjecture, With an appendix by Agol, Daniel Groves, and Jason Manning, Doc. Math. 18 (2013), 1045-1087. MR 3104553
  • [2] Roger C. Alperin, An elementary account of Selberg's lemma, Enseign. Math. (2) 33 (1987), no. 3-4, 269-273. MR 925989 (89f:20051)
  • [3] Hyman Bass, Groups of integral representation type, Pacific J. Math. 86 (1980), no. 1, 15-51. MR 586867 (82c:20014)
  • [4] Nicolas Bergeron, Frédéric Haglund, and Daniel T. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 431-448. MR 2776645 (2012f:57037), https://doi.org/10.1112/jlms/jdq082
  • [5] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49-87. MR 0377765 (51 #13934)
  • [6] David Fisher, Local rigidity of group actions: past, present, future, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 45-97. MR 2369442 (2009g:37021), https://doi.org/10.1017/CBO9780511755187.003
  • [7] Emily Hamilton, Abelian subgroup separability of Haken 3-manifolds and closed hyperbolic $ n$-orbifolds, Proc. London Math. Soc. (3) 83 (2001), no. 3, 626-646. MR 1851085 (2002g:57033), https://doi.org/10.1112/plms/83.3.626
  • [8] Emily Hamilton, Finite quotients of rings and applications to subgroup separability of linear groups, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1995-2006 (electronic). MR 2115087 (2005m:20068), https://doi.org/10.1090/S0002-9947-04-03580-9
  • [9] Emily Hamilton, Henry Wilton, and Pavel A. Zalesskii, Separability of double cosets and conjugacy classes in 3-manifold groups, J. Lond. Math. Soc. (2) 87 (2013), no. 1, 269-288. MR 3022716, https://doi.org/10.1112/jlms/jds040
  • [10] John Hempel, Residual finiteness for $ 3$-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 379-396. MR 895623 (89b:57002)
  • [11] G. A. Niblo, Separability properties of free groups and surface groups, J. Pure Appl. Algebra 78 (1992), no. 1, 77-84. MR 1154898 (92m:20019), https://doi.org/10.1016/0022-4049(92)90019-C
  • [12] Graham A. Niblo and Daniel T. Wise, Subgroup separability, knot groups and graph manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 3, 685-693. MR 1707529 (2001f:20075), https://doi.org/10.1090/S0002-9939-00-05574-X
  • [13] Pierre Py, Coxeter groups and Kähler groups, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 3, 557-566. MR 3118420, https://doi.org/10.1017/S0305004113000534
  • [14] Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555-565. MR 0494062 (58 #12996)
  • [15] Daniel T. Wise, Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009), 44-55. MR 2558631 (2011c:20052), https://doi.org/10.3934/era.2009.16.44

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20E26, 57MO5

Retrieve articles in all journals with MSC (2010): 20E26, 57MO5


Additional Information

Emily Hamilton
Affiliation: Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407

DOI: https://doi.org/10.1090/proc/12904
Received by editor(s): October 26, 2014
Received by editor(s) in revised form: November 12, 2014, and July 2, 2015
Published electronically: October 20, 2015
Communicated by: Martin Scharlemann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society