Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mock modular forms and quantum modular forms


Authors: Dohoon Choi, Subong Lim and Robert C. Rhoades
Journal: Proc. Amer. Math. Soc. 144 (2016), 2337-2349
MSC (2010): Primary 11F37; Secondary 11F67
DOI: https://doi.org/10.1090/proc/12907
Published electronically: October 20, 2015
MathSciNet review: 3477051
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In his last letter to Hardy, Ramanujan introduced mock theta functions. For each of his examples $ f(q)$, Ramanujan claimed that there is a collection $ \{ G_j\}$ of modular forms such that for each root of unity $ \zeta $, there is a $ j$ such that

$\displaystyle \lim _{q \to \zeta }(f(q) - G_j(q)) = O(1).$

Moreover, Ramanujan claimed that this collection must have size larger than $ 1$. In his 2001 PhD thesis, Zwegers showed that the mock theta functions are the holomorphic parts of harmonic weak Maass forms. In this paper, we prove that there must exist such a collection by establishing a more general result for all holomorphic parts of harmonic Maass forms. This complements the result of Griffin, Ono, and Rolen that shows such a collection cannot have size $ 1$. These results arise within the context of Zagier's theory of quantum modular forms. A linear injective map is given from the space of mock modular forms to quantum modular forms. Additionally, we provide expressions for ``Ramanujan's radial limits'' as $ L$-values.

References [Enhancements On Off] (What's this?)

  • [1] Bruce C. Berndt and Robert A. Rankin, Ramanujan, History of Mathematics, vol. 9, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1995. Letters and commentary. MR 1353909 (97c:01034)
  • [2] Richard E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), no. 2, 219-233. MR 1682249 (2000f:11052), https://doi.org/10.1215/S0012-7094-99-09710-7
  • [3] Kathrin Bringmann and Ken Ono, The $ f(q)$ mock theta function conjecture and partition ranks, Invent. Math. 165 (2006), no. 2, 243-266. MR 2231957 (2007e:11127), https://doi.org/10.1007/s00222-005-0493-5
  • [4] Kathrin Bringmann and Ken Ono, Lifting cusp forms to Maass forms with an application to partitions, Proc. Natl. Acad. Sci. USA 104 (2007), no. 10, 3725-3731. MR 2301875 (2009d:11073), https://doi.org/10.1073/pnas.0611414104
  • [5] Jan Hendrik Bruinier and Jens Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45-90. MR 2097357 (2005m:11089), https://doi.org/10.1215/S0012-7094-04-12513-8
  • [6] Jennifer Bryson, Ken Ono, Sarah Pitman, and Robert C. Rhoades, Unimodal sequences and quantum and mock modular forms, Proc. Natl. Acad. Sci. USA 109 (2012), no. 40, 16063-16067. MR 2994899, https://doi.org/10.1073/pnas.1211964109
  • [7] Dohoon Choi, Byungchan Kim, and Subong Lim, Eichler integrals and harmonic weak Maass forms, J. Math. Anal. Appl. 411 (2014), no. 1, 429-441. MR 3118497, https://doi.org/10.1016/j.jmaa.2013.09.052
  • [8] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267-298 (German). MR 0089928 (19,740a)
  • [9] Amanda Folsom, Ken Ono, and Robert C. Rhoades, Mock theta functions and quantum modular forms, Forum Math. Pi 1 (2013), e2, 27. MR 3141412
  • [10] Amanda Folsom, Ken Ono, and Robert C. Rhoades, Ramanujan's radial limits, Ramanujan 125, Contemp. Math., vol. 627, Amer. Math. Soc., Providence, RI, 2014, pp. 91-102. MR 3307493, https://doi.org/10.1090/conm/627/12534
  • [11] Michael Griffin, Ken Ono, and Larry Rolen, Ramanujan's mock theta functions, Proc. Natl. Acad. Sci. USA 110 (2013), no. 15, 5765-5768. MR 3065809, https://doi.org/10.1073/pnas.1300345110
  • [12] Marvin Knopp, Winfried Kohnen, and Wladimir Pribitkin, On the signs of Fourier coefficients of cusp forms, Ramanujan J. 7 (2003), no. 1-3, 269-277. Rankin memorial issues. MR 2035806 (2004m:11064), https://doi.org/10.1023/A:1026207515396
  • [13] Marvin Knopp and Henok Mawi, Eichler cohomology theorem for automorphic forms of small weights, Proc. Amer. Math. Soc. 138 (2010), no. 2, 395-404. MR 2557156 (2010i:11055), https://doi.org/10.1090/S0002-9939-09-10070-9
  • [14] Ruth Lawrence and Don Zagier, Modular forms and quantum invariants of $ 3$-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107. Sir Michael Atiyah: a great mathematician of the twentieth century. MR 1701924 (2000j:11057)
  • [15] Ken Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 347-454. MR 2555930 (2010m:11060)
  • [16] Larry Rolen and Robert P. Schneider, A ``strange'' vector-valued quantum modular form, Arch. Math. (Basel) 101 (2013), no. 1, 43-52. MR 3073664, https://doi.org/10.1007/s00013-013-0529-9
  • [17] G. N. Watson, The Final Problem : An Account of the Mock Theta Functions, J. London Math. Soc. S1-11 (1936), no. 1, 55. MR 1573993, https://doi.org/10.1112/jlms/s1-11.1.55
  • [18] Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), no. 5, 945-960. MR 1860536 (2002g:11055), https://doi.org/10.1016/S0040-9383(00)00005-7
  • [19] Don Zagier, Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann), Astérisque 326 (2009), Exp. No. 986, vii-viii, 143-164 (2010). Séminaire Bourbaki. Vol. 2007/2008. MR 2605321 (2011h:11049)
  • [20] Don Zagier, Quantum modular forms, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675. MR 2757599 (2012a:11066)
  • [21] S. P. Zwegers, Mock $ \theta $-functions and real analytic modular forms, $ q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 269-277. MR 1874536 (2003f:11061), https://doi.org/10.1090/conm/291/04907
  • [22] S. Zwegers, Mock theta functions, Ph. D. Thesis, U. Utrecht, 2002.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F37, 11F67

Retrieve articles in all journals with MSC (2010): 11F37, 11F67


Additional Information

Dohoon Choi
Affiliation: School of Liberal Arts and Sciences, Korea Aerospace University, 200-1, Hwajeon-dong, Goyang, Gyeonggi 412-791, Republic of Korea
Email: choija@kau.ac.kr

Subong Lim
Affiliation: Department of Mathematics Education, Sungkyunkwan University, Jongno-gu, Seoul 110-745, Republic of Korea
Email: subong@skku.edu

Robert C. Rhoades
Affiliation: Center for Communications Research, 805 Bunn Dr., Princeton, New Jersey 08450
Email: rob.rhoades@gmail.com

DOI: https://doi.org/10.1090/proc/12907
Keywords: Quantum modular form, Eichler integral, mock theta function, Ramanujan, radial limit
Received by editor(s): July 9, 2015
Published electronically: October 20, 2015
Additional Notes: The first and second authors were supported by Samsung Science and Technology Foundation under Project SSTF-BA1301-11.
Communicated by: Ken Ono
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society