Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

The congruence $ x^{x}\equiv\lambda\pmod p$


Authors: J. Cilleruelo and M. Z. Garaev
Journal: Proc. Amer. Math. Soc. 144 (2016), 2411-2418
MSC (2010): Primary 11A07
DOI: https://doi.org/10.1090/proc/12919
Published electronically: October 21, 2015
MathSciNet review: 3477057
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we obtain several new results related to the problem of upper bound estimates for the number of solutions of the congruence

$\displaystyle x^{x}\equiv \lambda \pmod p;\quad x\in \mathbb{N},\quad x\le p-1, $

where $ p$ is a large prime number and $ \lambda $ is an integer coprime to $ p$. Our arguments are based on recent estimates of trigonometric sums over subgroups due to Shkredov and Shteinikov.

References [Enhancements On Off] (What's this?)

  • [1] Antal Balog, Kevin A. Broughan, and Igor E. Shparlinski, On the number of solutions of exponential congruences, Acta Arith. 148 (2011), no. 1, 93-103. MR 2784012 (2012f:11071), https://doi.org/10.4064/aa148-1-7
  • [2] Antal Balog, Kevin A. Broughan, and Igor E. Shparlinski, Sum-products estimates with several sets and applications, Integers 12 (2012), no. 5, 895-906. MR 2988554, https://doi.org/10.1515/integers-2012-0012
  • [3] J. Cilleruelo and M. Z. Garaev, Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications, Preprint (2014).
  • [4] Roger Crocker, On residues of $ n^{n}$, Amer. Math. Monthly 76 (1969), 1028-1029. MR 0248072 (40 #1326)
  • [5] Joshua Holden and Pieter Moree, Some heuristics and results for small cycles of the discrete logarithm, Math. Comp. 75 (2006), no. 253, 419-449 (electronic). MR 2176407 (2006i:11145), https://doi.org/10.1090/S0025-5718-05-01768-0
  • [6] I. D. Shkredov, On exponential sums over multiplicative subgroups of medium size, Finite Fields Appl. 30 (2014), 72-87. MR 3249821, https://doi.org/10.1016/j.ffa.2014.06.002
  • [7] Yu. N. Shteinikov, Estimates of trigonometric sums modulo a prime, Preprint, 2014.
  • [8] Lawrence Somer, The residues of $ n^{n}$ modulo $ p$, Fibonacci Quart. 19 (1981), no. 2, 110-117. MR 614045 (82g:10007)
  • [9] I. M. Vinogradov, Elements of number theory., Translated by S. Kravetz. Dover Publications, Inc., New York, 1954. MR 0062138 (15,933e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11A07

Retrieve articles in all journals with MSC (2010): 11A07


Additional Information

J. Cilleruelo
Affiliation: Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid-28049, Spain
Email: franciscojavier.cilleruelo@uam.es

M. Z. Garaev
Affiliation: Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México
Email: garaev@matmor.unam.mx

DOI: https://doi.org/10.1090/proc/12919
Received by editor(s): March 23, 2015
Received by editor(s) in revised form: July 31, 2015
Published electronically: October 21, 2015
Communicated by: Ken Ono
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society