Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Periodic orbits of Lagrangian systems with prescribed action or period


Author: Miguel Paternain
Journal: Proc. Amer. Math. Soc. 144 (2016), 2999-3007
MSC (2010): Primary 37JXX; Secondary 70HXX
DOI: https://doi.org/10.1090/proc/12950
Published electronically: January 26, 2016
MathSciNet review: 3487231
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for every convex Lagrangian quadratic at infinity there is a real number $ a_0$ such that for every $ a>a_0$ the Lagrangian has a periodic orbit with action $ a$. We attain estimates on the period and energy of the periodic orbits obtained. We also show that such a Lagrangian has periodic orbits of every period.


References [Enhancements On Off] (What's this?)

  • [Abb13] Alberto Abbondandolo, Lectures on the free period Lagrangian action functional, J. Fixed Point Theory Appl. 13 (2013), no. 2, 397-430. MR 3122334, https://doi.org/10.1007/s11784-013-0128-1
  • [AM78] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics. Second edition, revised and enlarged. With the assistance of Tudor Raţiu and Richard Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. MR 515141 (81e:58025)
  • [AS09a] Alberto Abbondandolo and Matthias Schwarz, Estimates and computations in Rabinowitz-Floer homology, J. Topol. Anal. 1 (2009), no. 4, 307-405. MR 2597650 (2011c:53216), https://doi.org/10.1142/S1793525309000205
  • [AS09b] Alberto Abbondandolo and Matthias Schwarz, A smooth pseudo-gradient for the Lagrangian action functional, Adv. Nonlinear Stud. 9 (2009), no. 4, 597-623. MR 2560122 (2010m:37099)
  • [AS10] Alberto Abbondandolo and Matthias Schwarz, Floer homology of cotangent bundles and the loop product, Geom. Topol. 14 (2010), no. 3, 1569-1722. MR 2679580 (2011k:53126), https://doi.org/10.2140/gt.2010.14.1569
  • [Ben84] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 379-400 (English, with French summary). MR 779875 (86h:58048)
  • [Ben86] Vieri Benci, Periodic solutions of Lagrangian systems on a compact manifold, J. Differential Equations 63 (1986), no. 2, 135-161. MR 848265 (88h:58102), https://doi.org/10.1016/0022-0396(86)90045-8
  • [BT98] Abbas Bahri and Iskander A. Taimanov, Periodic orbits in magnetic fields and Ricci curvature of Lagrangian systems, Trans. Amer. Math. Soc. 350 (1998), no. 7, 2697-2717. MR 1458315 (98k:58051), https://doi.org/10.1090/S0002-9947-98-02108-4
  • [CDI97] Gonzalo Contreras, Jorge Delgado, and Renato Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 155-196. MR 1479500 (98i:58093), https://doi.org/10.1007/BF01233390
  • [CFP10] Kai Cieliebak, Urs Frauenfelder, and Gabriel P. Paternain, Symplectic topology of Mañé's critical values, Geom. Topol. 14 (2010), no. 3, 1765-1870. MR 2679582 (2011k:53127), https://doi.org/10.2140/gt.2010.14.1765
  • [CI99] Gonzalo Contreras and Renato Iturriaga, Global minimizers of autonomous Lagrangians, 22$ ^{\rm o}$ Colóquio Brasileiro de Matemática. [22nd Brazilian Mathematics Colloquium], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1999. MR 1720372 (2001j:37113)
  • [CIPP00] G. Contreras, R. Iturriaga, G. P. Paternain, and M. Paternain, The Palais-Smale condition and Mañé's critical values, Ann. Henri Poincaré 1 (2000), no. 4, 655-684. MR 1785184 (2001k:37101), https://doi.org/10.1007/PL00001011
  • [CMP04] Gonzalo Contreras, Leonardo Macarini, and Gabriel P. Paternain, Periodic orbits for exact magnetic flows on surfaces, Int. Math. Res. Not. 8 (2004), 361-387. MR 2036336 (2005a:37103), https://doi.org/10.1155/S1073792804205050
  • [Con06] Gonzalo Contreras, The Palais-Smale condition on contact type energy levels for convex Lagrangian systems, Calc. Var. Partial Differential Equations 27 (2006), no. 3, 321-395. MR 2260806 (2007i:37116), https://doi.org/10.1007/s00526-005-0368-z
  • [GG09] Viktor L. Ginzburg and Başak Z. Gürel, Periodic orbits of twisted geodesic flows and the Weinstein-Moser theorem, Comment. Math. Helv. 84 (2009), no. 4, 865-907. MR 2534483 (2010j:53185), https://doi.org/10.4171/CMH/184
  • [Gin96] Viktor L. Ginzburg, On closed trajectories of a charge in a magnetic field. An application of symplectic geometry, Contact and symplectic geometry (Cambridge, 1994) Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 131-148. MR 1432462 (97j:58128)
  • [GK99] Viktor L. Ginzburg and Ely Kerman, Periodic orbits in magnetic fields in dimensions greater than two, Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999) Contemp. Math., vol. 246, Amer. Math. Soc., Providence, RI, 1999, pp. 113-121. MR 1732375 (2000k:37087), https://doi.org/10.1090/conm/246/03778
  • [GP12] Nancy Guelman and Miguel Paternain, Periodic orbits of convex Lagrangians and average energy, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 2, 201-219. MR 2928169, https://doi.org/10.1007/s00574-012-0010-6
  • [HZ94] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732 (96g:58001)
  • [Kli78] Wilhelm Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Vol. 230. MR 0478069 (57 #17563)
  • [Maz11] Marco Mazzucchelli, The Lagrangian Conley conjecture, Comment. Math. Helv. 86 (2011), no. 1, 189-246. MR 2745280 (2012f:37131), https://doi.org/10.4171/CMH/222
  • [Mer10] Will J. Merry, Closed orbits of a charge in a weakly exact magnetic field, Pacific J. Math. 247 (2010), no. 1, 189-212. MR 2718211 (2012b:37168), https://doi.org/10.2140/pjm.2010.247.189
  • [Nov82] S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), no. 5(227), 3-49, 248 (Russian). MR 676612 (84h:58032)
  • [Pal63] Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340. MR 0158410 (28 #1633)
  • [Pat] Miguel Paternain, Periodic orbits with prescribed abbreviated action, Proc. Amer. Math. Soc. 143 (2015), no. 9, 4001-4008. MR 3359588, https://doi.org/10.1090/S0002-9939-2015-12597-X
  • [Str96] Michael Struwe, Variational methods, 2nd ed., Applications to nonlinear partial differential equations and Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. MR 1411681 (98f:49002)
  • [Taĭ91] I. A. Taĭmanov, Non-self-intersecting closed extremals of multivalued or not-everywhere-positive functionals, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 2, 367-383 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 2, 359-374. MR 1133303 (92i:58036)
  • [Taĭ92] I. A. Taĭmanov, Closed extremals on two-dimensional manifolds, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 143-185, 223 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 163-211. MR 1185286 (93k:58050), https://doi.org/10.1070/RM1992v047n02ABEH000880

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37JXX, 70HXX

Retrieve articles in all journals with MSC (2010): 37JXX, 70HXX


Additional Information

Miguel Paternain
Affiliation: Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
Email: miguel@cmat.edu.uy

DOI: https://doi.org/10.1090/proc/12950
Keywords: Convex Lagrangian, action functional, periodic orbit
Received by editor(s): April 28, 2015
Received by editor(s) in revised form: August 10, 2015, and August 31, 2015
Published electronically: January 26, 2016
Additional Notes: The author was supported by an Anii grant
Communicated by: Yingfei Yi
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society