Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the embedding of $ A_1$ into $ A_\infty$


Author: Guillermo Rey
Journal: Proc. Amer. Math. Soc. 144 (2016), 4455-4470
MSC (2010): Primary 42B35; Secondary 46E30
DOI: https://doi.org/10.1090/proc/13087
Published electronically: April 25, 2016
MathSciNet review: 3531194
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a quantitative embedding of the Muckenhoupt class $ A_1$ into $ A_\infty $. In particular, we show how $ \epsilon $ depends on $ [w]_{A_1}$ in the inequality which characterizes $ A_\infty $ weights:

$\displaystyle \frac {w(E)}{w(Q)} \leq \biggl ( \frac {\vert E\vert}{\vert Q\vert} \biggr )^\epsilon , $

where $ Q$ is any dyadic cube and $ E$ is any subset of $ Q$. This embedding yields a sharp reverse-Hölder inequality as an easy corollary.

References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50 #10670)
  • [2] C. Domingo-Salazar, M. T. Lacey, and G. Rey, Borderline weak-type estimates for singular integrals and square functions,
    Bulletin of the London Mathematical Society, Dec. 2015.
  • [3] Tuomas Hytönen, Carlos Pérez, and Ezequiel Rela, Sharp reverse Hölder property for $ A_\infty $ weights on spaces of homogeneous type, J. Funct. Anal. 263 (2012), no. 12, 3883-3899. MR 2990061, https://doi.org/10.1016/j.jfa.2012.09.013
  • [4] Antonios D. Melas, A sharp $ L^p$ inequality for dyadic $ A_1$ weights in $ \mathbb{R}^n$, Bull. London Math. Soc. 37 (2005), no. 6, 919-926. MR 2186725 (2006h:42035), https://doi.org/10.1112/S0024609305004765
  • [5] F. Nazarov, A. Reznikov, V. Vasyunin, and A. Volberg, A Bellman function counterexample to the $ A_1$ conjecture: The blow-up of the weak norm estimates of weighted singular operators,
    ArXiv e-prints, June 2015.
  • [6] F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909-928. MR 1685781 (2000k:42009), https://doi.org/10.1090/S0894-0347-99-00310-0
  • [7] Adam Osekowski, Sharp inequalities for dyadic $ A_1$ weights, Arch. Math. (Basel) 101 (2013), no. 2, 181-190. MR 3089774, https://doi.org/10.1007/s00013-013-0537-9
  • [8] Guillermo Rey and Alexander Reznikov, Extremizers and sharp weak-type estimates for positive dyadic shifts, Adv. Math. 254 (2014), 664-681. MR 3161110, https://doi.org/10.1016/j.aim.2013.12.030
  • [9] Leonid Slavin, Alexander Stokolos, and Vasily Vasyunin, Monge-Ampère equations and Bellman functions: the dyadic maximal operator, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 585-588 (English, with English and French summaries). MR 2412802 (2009c:42036), https://doi.org/10.1016/j.crma.2008.03.003
  • [10] V. I. Vasyunin, The exact constant in the inverse Hölder inequality for Muckenhoupt weights, Algebra i Analiz 15 (2003), no. 1, 73-117 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 1, 49-79. MR 1979718 (2004h:42017), https://doi.org/10.1090/S1061-0022-03-00802-1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B35, 46E30

Retrieve articles in all journals with MSC (2010): 42B35, 46E30


Additional Information

Guillermo Rey
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027
Email: reyguill@math.msu.edu

DOI: https://doi.org/10.1090/proc/13087
Received by editor(s): April 27, 2015
Received by editor(s) in revised form: January 2, 2016
Published electronically: April 25, 2016
Communicated by: Svitlana Mayboroda
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society