Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Brauer-Wielandt formula (with an application to character tables)


Authors: Gabriel Navarro and Noelia Rizo
Journal: Proc. Amer. Math. Soc. 144 (2016), 4199-4204
MSC (2010): Primary 20Dxx; Secondary 20C15
DOI: https://doi.org/10.1090/proc/13089
Published electronically: April 20, 2016
MathSciNet review: 3531172
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If a $ p$-group $ P$ acts coprimely on a finite group $ G$, we give a Brauer-Wielandt formula to count the number of fixed points $ \vert {\bf C}_{G}(P) \vert$ of $ P$ in $ G$. This serves to determine the number of Sylow $ p$-subgroups of certain finite groups from their character tables.


References [Enhancements On Off] (What's this?)

  • [Br] Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133-175. MR 0178056 (31 #2314)
  • [H] P. Hall and Graham Higman, On the $ p$-length of $ p$-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42. MR 0072872 (17,344b)
  • [I] I. Martin Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR 2426855 (2009e:20029)
  • [Is] I. Martin Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR 2270898
  • [N1] Gabriel Navarro, Fusion in the character table, Proc. Amer. Math. Soc. 126 (1998), no. 1, 65-66. MR 1423326 (98c:20017), https://doi.org/10.1090/S0002-9939-98-04134-3
  • [N2] Gabriel Navarro, Problems on characters and Sylow subgroups, Finite groups 2003, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 275-281. MR 2125079 (2005k:20015)
  • [W] Helmut Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer eindlichen Gruppe, Math. Z 73 (1960), 146-158 (German). MR 0117286 (22 #8067)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20Dxx, 20C15

Retrieve articles in all journals with MSC (2010): 20Dxx, 20C15


Additional Information

Gabriel Navarro
Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot, València, Spain
Email: gabriel.navarro@uv.es

Noelia Rizo
Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot, València, Spain
Email: noelia.rizo@uv.es

DOI: https://doi.org/10.1090/proc/13089
Keywords: Brauer-Wielandt, character tables
Received by editor(s): December 12, 2015
Received by editor(s) in revised form: December 13, 2015, and January 7, 2016
Published electronically: April 20, 2016
Additional Notes: The research of the first author was supported by the Prometeo/Generalitat Valenciana, and Proyecto MTM2013-40464-P. The second author was supported by a Fellowship FPU of Ministerio de Educación, Cultura y Deporte
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society