Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Periodic points for amenable group actions on dendrites


Authors: Enhui Shi and Xiangdong Ye
Journal: Proc. Amer. Math. Soc. 145 (2017), 177-184
MSC (2010): Primary 37B05; Secondary 54F50
DOI: https://doi.org/10.1090/proc/13206
Published electronically: June 10, 2016
MathSciNet review: 3565370
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ G$ is a countable amenable group acting on a dendrite $ X$, then $ G$ has either a fixed point or a 2-periodic point in $ X$.


References [Enhancements On Off] (What's this?)

  • [1] Étienne Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), no. 3-4, 329-407. MR 1876932
  • [2] H. Marzougui and I. Naghmouchi, Minimal sets for group actions on dendrites (to appear in Proc. Amer. Math. Soc.).
  • [3] Nicolas Monod, Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA 110 (2013), no. 12, 4524-4527. MR 3047655, https://doi.org/10.1073/pnas.1218426110
  • [4] Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
  • [5] Andrés Navas, Grupos de difeomorfismos del círculo, Ensaios Matemáticos [Mathematical Surveys], vol. 13, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007 (Spanish, with English summary). MR 2394157
  • [6] Enhui Shi, Free subgroups of dendrite homeomorphism group, Topology Appl. 159 (2012), no. 10-11, 2662-2668. MR 2923436, https://doi.org/10.1016/j.topol.2012.04.001
  • [7] Enhui Shi and Binyong Sun, Fixed point properties of nilpotent group actions on 1-arcwise connected continua, Proc. Amer. Math. Soc. 137 (2009), no. 2, 771-775. MR 2448600, https://doi.org/10.1090/S0002-9939-08-09522-1
  • [8] Enhui Shi, Suhua Wang, and Lizhen Zhou, Minimal group actions on dendrites, Proc. Amer. Math. Soc. 138 (2010), no. 1, 217-223. MR 2550186, https://doi.org/10.1090/S0002-9939-09-10000-X
  • [9] Enhui Shi and Lizhen Zhou, Periodic points of solvable group actions on 1-arcwise connected continua, Topology Appl. 157 (2010), no. 7, 1163-1167. MR 2607082, https://doi.org/10.1016/j.topol.2010.02.006
  • [10] A. Yu. Olshanskii and M. V. Sapir, Non-amenable finitely presented torsion-by-cyclic groups, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 63-71. MR 1852901, https://doi.org/10.1090/S1079-6762-01-00095-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B05, 54F50

Retrieve articles in all journals with MSC (2010): 37B05, 54F50


Additional Information

Enhui Shi
Affiliation: School of Mathematical Sciences, Soochow University, Suzhou 215006, People’s Republic of China
Email: ehshi@suda.edu.cn

Xiangdong Ye
Affiliation: School of Mathematical Sciences, University of Science and Technology of China, Hefei 230022, People’s Republic of China
Email: yexd@ustc.edu.cn

DOI: https://doi.org/10.1090/proc/13206
Keywords: Amenable group, periodic point, dendrite
Received by editor(s): February 21, 2016
Received by editor(s) in revised form: March 1, 2016
Published electronically: June 10, 2016
Communicated by: Yingfei Yi
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society