Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Least action nodal solutions for the quadratic Choquard equation


Authors: Marco Ghimenti, Vitaly Moroz and Jean Van Schaftingen
Journal: Proc. Amer. Math. Soc. 145 (2017), 737-747
MSC (2010): Primary 35J91; Secondary 35J20, 35Q55
DOI: https://doi.org/10.1090/proc/13247
Published electronically: August 17, 2016
MathSciNet review: 3577874
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of a minimal action nodal solution for the quadratic Choquard equation

$\displaystyle -\Delta u + u = \bigl (I_\alpha \ast \Vert u\Vert^2\bigr )u$$\displaystyle \quad \text {in \(\mathbb{R}^N\)},$    

where $ I_\alpha $ is the Riesz potential of order $ \alpha \in (0,N)$. The solution is constructed as the limit of minimal action nodal solutions for the nonlinear Choquard equations

$\displaystyle -\Delta u + u = \bigl (I_\alpha \ast \Vert u\Vert^p\bigr )\vert u\vert^{p-2}u$$\displaystyle \quad \text {in \(\mathbb{R}^N\)}$    

when $ p\searrow 2$. The existence of minimal action nodal solutions for $ p>2$ can be proved using a variational minimax procedure over a Nehari nodal set. No minimal action nodal solutions exist when $ p<2$.

References [Enhancements On Off] (What's this?)

  • [1] Nils Ackermann and Tobias Weth, Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting, Commun. Contemp. Math. 7 (2005), no. 3, 269-298. MR 2151860, https://doi.org/10.1142/S0219199705001763
  • [2] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655
  • [3] Claudio Bonanno, Pietro d'Avenia, Marco Ghimenti, and Marco Squassina, Soliton dynamics for the generalized Choquard equation, J. Math. Anal. Appl. 417 (2014), no. 1, 180-199. MR 3191420, https://doi.org/10.1016/j.jmaa.2014.02.063
  • [4] Alfonso Castro, Jorge Cossio, and John M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997), no. 4, 1041-1053. MR 1627654, https://doi.org/10.1216/rmjm/1181071858
  • [5] Alfonso Castro, Jorge Cossio, and John M. Neuberger, A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems, Electron. J. Differential Equations (1998), No. 02, 18 pp. (electronic). MR 1491525
  • [6] G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), no. 3, 289-306. MR 867663, https://doi.org/10.1016/0022-1236(86)90094-7
  • [7] Silvia Cingolani, Mónica Clapp, and Simone Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys. 63 (2012), no. 2, 233-248. MR 2912346, https://doi.org/10.1007/s00033-011-0166-8
  • [8] Silvia Cingolani and Simone Secchi, Multiple $ \mathbb{S}^1$-orbits for the Schrödinger-Newton system, Differential Integral Equations 26 (2013), no. 9-10, 867-884. MR 3100069
  • [9] Silvia Cingolani and Simone Secchi, Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 1, 73-90. MR 3304576, https://doi.org/10.1017/S0308210513000450
  • [10] Mónica Clapp and Dora Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl. 407 (2013), no. 1, 1-15. MR 3063100, https://doi.org/10.1016/j.jmaa.2013.04.081
  • [11] Pietro d'Avenia, Gaetano Siciliano, and Marco Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci. 25 (2015), no. 8, 1447-1476. MR 3340706, https://doi.org/10.1142/S0218202515500384
  • [12] Jozef T. Devreese and Alexandre S. Alexandrov, Advances in polaron physics, Springer Series in Solid-State Sciences, vol. 159, Springer, 2010.
  • [13] Jürg Fröhlich and Enno Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Équations aux Dérivées Partielles. 2003-2004, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2004, pp. Exp. No. XIX, 26. MR 2117050
  • [14] Marco Ghimenti and Jean Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), no. 1, 107-135. MR 3494244, https://doi.org/10.1016/j.jfa.2016.04.019
  • [15] K. R. W. Jones, Newtonian Quantum Gravity, Australian Journal of Physics 48 (1995), no. 6, 1055-1081.
  • [16] Enno Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE 2 (2009), no. 1, 1-27. MR 2561169, https://doi.org/10.2140/apde.2009.2.1
  • [17] Elliott H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math. 57 (1976/77), no. 2, 93-105. MR 0471785
  • [18] Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225
  • [19] P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), no. 6, 1063-1072. MR 591299, https://doi.org/10.1016/0362-546X(80)90016-4
  • [20] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145 (English, with French summary). MR 778970
  • [21] Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283.
  • [22] Zhaoli Liu and Zhi-Qiang Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004), no. 4, 563-574. MR 2100913
  • [23] Li Ma and Lin Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. MR 2592284, https://doi.org/10.1007/s00205-008-0208-3
  • [24] Gustavo Perla Menzala, On regular solutions of a nonlinear equation of Choquard's type, Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), no. 3-4, 291-301. MR 592556, https://doi.org/10.1017/S0308210500012191
  • [25] Irene M. Moroz, Roger Penrose, and Paul Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity 15 (1998), no. 9, 2733-2742. Topology of the Universe Conference (Cleveland, OH, 1997). MR 1649671, https://doi.org/10.1088/0264-9381/15/9/019
  • [26] Vitaly Moroz and Jean Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), no. 2, 153-184. MR 3056699, https://doi.org/10.1016/j.jfa.2013.04.007
  • [27] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
  • [28] Jean Van Schaftingen, Interpolation inequalities between Sobolev and Morrey-Campanato spaces: a common gateway to concentration-compactness and Gagliardo-Nirenberg interpolation inequalities, Port. Math. 71 (2014), no. 3-4, 159-175. MR 3298459, https://doi.org/10.4171/PM/1947
  • [29] Jean Van Schaftingen and Michel Willem, Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 439-456. MR 2390331
  • [30] Tobias Weth, Spectral and variational characterizations of solutions to semilinear eigenvalue problems, Johannes Gutenberg-Universität, Mainz, 2001.
  • [31] Tobias Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differential Equations 27 (2006), no. 4, 421-437. MR 2263672, https://doi.org/10.1007/s00526-006-0015-3
  • [32] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1400007
  • [33] Michel Willem, Functional analysis, Cornerstones, Birkhäuser/Springer, New York, 2013. Fundamentals and applications. MR 3112778

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J91, 35J20, 35Q55

Retrieve articles in all journals with MSC (2010): 35J91, 35J20, 35Q55


Additional Information

Marco Ghimenti
Affiliation: Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56100 Pisa, Italy
Email: marco.ghimenti@dma.unipi.it

Vitaly Moroz
Affiliation: Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
Email: V.Moroz@swansea.ac.uk

Jean Van Schaftingen
Affiliation: Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2 bte L7.01.01, 1348 Louvain-la-Neuve, Belgium
Email: Jean.VanSchaftingen@UCLouvain.be

DOI: https://doi.org/10.1090/proc/13247
Keywords: Stationary nonlinear Schr\"odinger--Newton equation, stationary Hartree equation, nodal Nehari set, concentration-compactness
Received by editor(s): November 17, 2015
Received by editor(s) in revised form: April 17, 2016
Published electronically: August 17, 2016
Communicated by: Catherine Sulem
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society