Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Entropy flux - electrostatic capacity - graphical mass


Author: J. Xiao
Journal: Proc. Amer. Math. Soc. 145 (2017), 825-832
MSC (2010): Primary 31B15, 35N25, 52A40
DOI: https://doi.org/10.1090/proc/13259
Published electronically: August 5, 2016
MathSciNet review: 3577881
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note shows that the optimal inequality

$\displaystyle \mathsf {F}(K,\kappa )\le \mathsf {C}(K)\le 2(n-2)\sigma _{n-1}\mathsf {M}(\mathbb{R}^n\setminus K^\circ ,\delta +df\otimes df) $

holds for the entropy flux $ \mathsf {F}(K,\kappa )$, the electrostatic capacity $ \mathsf {C}(K)=\mathsf {C}(\partial K)$ and the graphical mass $ \mathsf {M}(\mathbb{R}^n\setminus K^\circ ,\delta +df\otimes df)$ generated by a compact $ K\subset \mathbb{R}^{n\ge 3}$ with nonempty interior $ K^\circ $ and smooth boundary $ \partial K$.

References [Enhancements On Off] (What's this?)

  • [1] Hubert L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom. 59 (2001), no. 2, 177-267. MR 1908823
  • [2] Hubert Bray and Pengzi Miao, On the capacity of surfaces in manifolds with nonnegative scalar curvature, Invent. Math. 172 (2008), no. 3, 459-475. MR 2393076, https://doi.org/10.1007/s00222-007-0102-x
  • [3] Andrea Colesanti and Paolo Salani, The Brunn-Minkowski inequality for $ p$-capacity of convex bodies, Math. Ann. 327 (2003), no. 3, 459-479. MR 2021025, https://doi.org/10.1007/s00208-003-0460-7
  • [4] W. A. Day, Entropy and partial differential equations, Pitman Research Notes in Mathematics Series, vol. 295, Longman Scientific & Technical, Harlow, 1993. MR 1413296
  • [5] L. C. Evans, Entropy and Partial Differential Equations, https://math.berkeley.edu/ evans/entropy.and.PDE.pdf.
  • [6] L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000. MR 1751289
  • [7] Alexandre Freire and Fernando Schwartz, Mass-capacity inequalities for conformally flat manifolds with boundary, Comm. Partial Differential Equations 39 (2014), no. 1, 98-119. MR 3169780, https://doi.org/10.1080/03605302.2013.851211
  • [8] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115
  • [9] Lan-Hsuan Huang and Damin Wu, Hypersurfaces with nonnegative scalar curvature, J. Differential Geom. 95 (2013), no. 2, 249-278. MR 3128984
  • [10] Lan-Hsuan Huang and Damin Wu, The equality case of the Penrose inequality for asymptotically flat graphs, Trans. Amer. Math. Soc. 367 (2015), no. 1, 31-47. MR 3271252, https://doi.org/10.1090/S0002-9947-2014-06090-X
  • [11] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. MR 1916951
  • [12] Mau-Kwong George Lam, The graph cases of the Riemannian positive mass and Penrose inequalities in all dimensions, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Duke University, 2011. MR 2873434
  • [13] John L. Lewis, Capacitary functions in convex rings, Arch. Rational Mech. Anal. 66 (1977), no. 3, 201-224. MR 0477094
  • [14] Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225
  • [15] Vladimir Mazya, Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev-type imbeddings, J. Funct. Anal. 224 (2005), no. 2, 408-430. MR 2146047, https://doi.org/10.1016/j.jfa.2004.09.009
  • [16] Vladimir Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. MR 2777530
  • [17] G. Menon, Lectures on partial differential equations, http://www.dam.brown.edu/people/menon/am223/pde.pdf.
  • [18] G. Pólya, Estimating electrostatic capacity, Amer. Math. Monthly 54 (1947), 201-206. MR 0020175
  • [19] Wolfgang Reichel, Characterization of balls by Riesz-potentials, Ann. Mat. Pura Appl. (4) 188 (2009), no. 2, 235-245. MR 2491802, https://doi.org/10.1007/s10231-008-0073-6
  • [20] Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45-76. MR 526976
  • [21] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159-183. MR 535700, https://doi.org/10.1007/BF01647970
  • [22] Fernando Schwartz, A volumetric Penrose inequality for conformally flat manifolds, Ann. Henri Poincaré 12 (2011), no. 1, 67-76. MR 2770090, https://doi.org/10.1007/s00023-010-0070-3
  • [23] M. Shubin, Capacity and its applications, http://citeseerx.ist.psu.edu/viewdoc/download?doi
    =10.1.1.140.1404&rep=rep1&type=pdf.
  • [24] Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), no. 3, 381-402. MR 626707
  • [25] J. Xiao, A maximum problem of S.-T. Yau for variational $ p$-capacity, Adv. Geom. (in press) (2016).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 31B15, 35N25, 52A40

Retrieve articles in all journals with MSC (2010): 31B15, 35N25, 52A40


Additional Information

J. Xiao
Affiliation: Department of Mathematics and Statistics, Memorial University, St. John’s, Newfoundland A1C 5S7, Canada
Email: jxiao@mun.ca

DOI: https://doi.org/10.1090/proc/13259
Received by editor(s): October 20, 2015
Received by editor(s) in revised form: April 22, 2016
Published electronically: August 5, 2016
Additional Notes: This project was in part supported by NSERC of Canada (202979463102000).
Communicated by: Joachim Krieger
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society