Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the generalized Zalcman functional $ \lambda a_n^2-a_{2n-1}$ in the close-to-convex family


Authors: Liulan Li and Saminathan Ponnusamy
Journal: Proc. Amer. Math. Soc. 145 (2017), 833-846
MSC (2010): Primary 30C45; Secondary 30C20, 30C55
DOI: https://doi.org/10.1090/proc/13260
Published electronically: August 23, 2016
MathSciNet review: 3577882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal S}$ denote the class of all functions $ f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ analytic and univalent in the unit disk $ \mathbb{D}$. For $ f\in {\mathcal S}$, Zalcman conjectured that $ \vert a_n^2-a_{2n-1}\vert\leq (n-1)^2$ for $ n\geq 3$. This conjecture has been verified for only certain values of $ n$ for $ f\in {\mathcal S}$ and for all $ n\ge 4$ for the class $ \mathcal C$ of close-to-convex functions (and also for a couple of other classes). In this paper we provide bounds of the generalized Zalcman coefficient functional $ \vert\lambda a_n^2-a_{2n-1}\vert$ for functions in $ \mathcal C$ and for all $ n\ge 3$, where $ \lambda $ is a positive constant.


References [Enhancements On Off] (What's this?)

  • [1] Yusuf Abu Muhanna, Liulan Li, and Saminathan Ponnusamy, Extremal problems on the class of convex functions of order $ -1/2$, Arch. Math. (Basel) 103 (2014), no. 6, 461-471. MR 3284304, https://doi.org/10.1007/s00013-014-0705-6
  • [2] B. Bhowmik, S. Ponnusamy, and K.-J. Wirths, On the Fekete-Szegő problem for concave univalent functions, J. Math. Anal. Appl. 373 (2011), no. 2, 432-438. MR 2720694, https://doi.org/10.1016/j.jmaa.2010.07.054
  • [3] Johnny E. Brown and Anna Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z. 191 (1986), no. 3, 467-474. MR 824446, https://doi.org/10.1007/BF01162720
  • [4] Jae Ho Choi, Yong Chan Kim, and Toshiyuki Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan 59 (2007), no. 3, 707-727. MR 2344824
  • [5] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
  • [6] A. W. Goodman, Univalent functions, Vols. 1-2, Mariner, Tampa, Florida, 1983.
  • [7] D. J. Hallenbeck and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Monographs and Studies in Mathematics, vol. 22, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 768747
  • [8] S. Kanas and H. E. Darwish, Fekete-Szegő problem for starlike and convex functions of complex order, Appl. Math. Lett. 23 (2010), no. 7, 777-782. MR 2639878, https://doi.org/10.1016/j.aml.2010.03.008
  • [9] Yong Chan Kim, Jae Ho Choi, and Toshiyuki Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 95-98. MR 1769977
  • [10] Wolfram Koepf, On the Fekete-Szegő problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89-95. MR 897076, https://doi.org/10.2307/2046556
  • [11] Wolfram Koepf, On the Fekete-Szegő problem for close-to-convex functions. II, Arch. Math. (Basel) 49 (1987), no. 5, 420-433. MR 915916, https://doi.org/10.1007/BF01194100
  • [12] Samuel L. Krushkal, Univalent functions and holomorphic motions, J. Anal. Math. 66 (1995), 253-275. MR 1370352, https://doi.org/10.1007/BF02788824
  • [13] Samuel L. Krushkal, Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J. 17 (2010), no. 4, 663-681. MR 2746187, https://doi.org/10.1515/gmj-2012-0099
  • [14] Liulan Li and Saminathan Ponnusamy, Generalized Zalcman conjecture for convex functions of order $ -1/2$, J. Anal. 22 (2014), 77-87. MR 3467599
  • [15] L. Li, S. Ponnusamy, and J. Qiao, Generalized Zalcman conjecture for convex functions of order $ \alpha $, Acta Mathematica Hungarica, Available online. DOI: 10.1007/s10474-016-0639-5.
  • [16] Wan Cang Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc. 104 (1988), no. 3, 741-744. MR 964850, https://doi.org/10.2307/2046784
  • [17] William Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl. 234 (1999), no. 1, 328-339. MR 1694809, https://doi.org/10.1006/jmaa.1999.6378
  • [18] T. H. MacGregor and D. R. Wilken, Extreme points and support points, Handbook of complex analysis: geometric function theory, Vol.1, North-Holland, Amsterdam, 2002, pp. 371-392. MR 1966199, https://doi.org/10.1016/S1874-5709(02)80014-2
  • [19] Albert Pfluger, On a coefficient problem for schlicht functions, Advances in complex function theory (Proc. Sem., Univ. Maryland, College Park, Md., 1973-1974) Lecture Notes in Math., Vol. 505, Springer, Berlin, 1976, pp. 79-91. MR 0417405
  • [20] Albert Pfluger, The Fekete-Szegő inequality for complex parameters, Complex Variables Theory Appl. 7 (1986), no. 1-3, 149-160. MR 877660
  • [21] Christian Pommerenke, Univalent functions, with a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. MR 0507768
  • [22] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C45, 30C20, 30C55

Retrieve articles in all journals with MSC (2010): 30C45, 30C20, 30C55


Additional Information

Liulan Li
Affiliation: College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421002, People’s Republic of China
Email: lanlimail2012@sina.cn

Saminathan Ponnusamy
Affiliation: Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India
Email: samy@isichennai.res.in, samy@iitm.ac.in

DOI: https://doi.org/10.1090/proc/13260
Keywords: Univalent, convex, starlike and close-to-convex functions, Fekete-Szeg\"o inequality, Zalcman and generalized Zalcman functionals
Received by editor(s): February 15, 2016
Received by editor(s) in revised form: April 23, 2016
Published electronically: August 23, 2016
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society