Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Finite dimensional Hopf actions on deformation quantizations


Authors: Pavel Etingof and Chelsea Walton
Journal: Proc. Amer. Math. Soc. 145 (2017), 1917-1925
MSC (2010): Primary 16T05, 16S80, 17B63, 16W70
DOI: https://doi.org/10.1090/proc/13356
Published electronically: October 27, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study when a finite dimensional Hopf action on a quantum formal deformation $ A$ of a commutative domain $ A_0$ (i.e., a deformation quantization) must factor through a group algebra. In particular, we show that this occurs when the Poisson center of the fraction field of $ A_0$ is trivial.


References [Enhancements On Off] (What's this?)

  • [ATV] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33-85. MR 1086882
  • [BK] R. Bezrukavnikov and D. Kaledin, Fedosov quantization in algebraic context, Mosc. Math. J. 4 (2004), no. 3, 559-592, 782 (English, with English and Russian summaries). MR 2119140
  • [BCF] Jeffrey Bergen, Miriam Cohen, and Davida Fischman, Irreducible actions and faithful actions of Hopf algebras, Israel J. Math. 72 (1990), no. 1-2, 5-18. Hopf algebras. MR 1098978, https://doi.org/10.1007/BF02764609
  • [CWWZ] K. Chan, C. Walton, Y. H. Wang, and J. J. Zhang, Hopf actions on filtered regular algebras, J. Algebra 397 (2014), 68-90. MR 3119216, https://doi.org/10.1016/j.jalgebra.2013.09.002
  • [CEW1] Juan Cuadra, Pavel Etingof, and Chelsea Walton, Semisimple Hopf actions on Weyl algebras, Adv. Math. 282 (2015), 47-55. MR 3374522, https://doi.org/10.1016/j.aim.2015.05.014
  • [CEW2] J. Cuadra, P. Etingof, and C. Walton, Finite dimensional Hopf actions on Weyl algebras, arXiv:1509.01165.
  • [EGMW] P. Etingof, D. Goswami, A. Mandal, and C. Walton, Hopf coactions on commutative algebras generated by a quadratically independent comodule, arXiv:1507.08486.
  • [EW1] Pavel Etingof and Chelsea Walton, Semisimple Hopf actions on commutative domains, Adv. Math. 251 (2014), 47-61. MR 3130334, https://doi.org/10.1016/j.aim.2013.10.008
  • [EW2] Pavel Etingof and Chelsea Walton, Pointed Hopf actions on fields, I, Transform. Groups 20 (2015), no. 4, 985-1013. MR 3416436, https://doi.org/10.1007/s00031-015-9328-7
  • [SV] Serge Skryabin and Freddy Van Oystaeyen, The Goldie Theorem for $ H$-semiprime algebras, J. Algebra 305 (2006), no. 1, 292-320. MR 2264132, https://doi.org/10.1016/j.jalgebra.2006.06.030

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16T05, 16S80, 17B63, 16W70

Retrieve articles in all journals with MSC (2010): 16T05, 16S80, 17B63, 16W70


Additional Information

Pavel Etingof
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: etingof@math.mit.edu

Chelsea Walton
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Email: notlaw@temple.edu

DOI: https://doi.org/10.1090/proc/13356
Keywords: Deformation quantization, filtered deformation, Hopf algebra action, Poisson center
Received by editor(s): February 21, 2016
Received by editor(s) in revised form: July 2, 2016
Published electronically: October 27, 2016
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society