Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the remainder term of the Berezin inequality on a convex domain


Author: Simon Larson
Journal: Proc. Amer. Math. Soc. 145 (2017), 2167-2181
MSC (2010): Primary 35P15; Secondary 47A75
DOI: https://doi.org/10.1090/proc/13386
Published electronically: November 18, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Dirichlet eigenvalues of the Laplacian on a convex domain in $ \mathbb{R}^n$, with $ n\geq 2$. In particular, we generalize and improve upper bounds for the Riesz means of order $ \sigma \geq 3/2$ established in an article by Geisinger, Laptev and Weidl. This is achieved by refining estimates for a negative second term in the Berezin inequality. The obtained remainder term reflects the correct order of growth in the semi-classical limit and depends only on the measure of the boundary of the domain. We emphasize that such an improvement is for general $ \Omega \subset \mathbb{R}^n$ not possible and was previously known to hold only for planar convex domains satisfying certain geometric conditions.

As a corollary we obtain lower bounds for the individual eigenvalues $ \lambda _k$, which for a certain range of $ k$ improves the Li-Yau inequality for convex domains. However, for convex domains one can by using different methods obtain even stronger lower bounds for $ \lambda _k$.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aizenman and Elliott H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett. A 66 (1978), no. 6, 427-429. MR 598768, https://doi.org/10.1016/0375-9601(78)90385-7
  • [2] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167 (Russian). MR 0350504
  • [3] R. Courant and D. Hilbert, Methoden der mathematischen Physik. 1. Band. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 12.), Berlin: J. Springer, gr. $ 8^\circ $, XIII, 450 S (1924), 1924.
  • [4] Rupert L. Frank and Leander Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain, Mathematical results in quantum physics, World Sci. Publ., Hackensack, NJ, 2011, pp. 138-147. MR 2885166, https://doi.org/10.1142/9789814350365_0012
  • [5] Leander Geisinger, Ari Laptev, and Timo Weidl, Geometrical versions of improved Berezin-Li-Yau inequalities, J. Spectr. Theory 1 (2011), no. 1, 87-109. MR 2820887, https://doi.org/10.4171/JST/4
  • [6] L. Geisinger and T. Weidl, Universal bounds for traces of the Dirichlet Laplace operator, J. Lond. Math. Soc. (2) 82 (2010), no. 2, 395-419. MR 2725046, https://doi.org/10.1112/jlms/jdq033
  • [7] Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218. MR 0609014
  • [8] V. Ja. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25-34 (Russian). MR 575202
  • [9] Victor Ivrii, Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1631419
  • [10] Hynek Kovařík, Semjon Vugalter, and Timo Weidl, Two-dimensional Berezin-Li-Yau inequalities with a correction term, Comm. Math. Phys. 287 (2009), no. 3, 959-981. MR 2486669, https://doi.org/10.1007/s00220-008-0692-1
  • [11] A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal. 151 (1997), no. 2, 531-545. MR 1491551, https://doi.org/10.1006/jfan.1997.3155
  • [12] Ari Laptev and Timo Weidl, Sharp Lieb-Thirring inequalities in high dimensions, Acta Math. 184 (2000), no. 1, 87-111. MR 1756570, https://doi.org/10.1007/BF02392782
  • [13] Simon Larson, A bound for the perimeter of inner parallel bodies, J. Funct. Anal. 271 (2016), no. 3, 610-619. MR 3506959, https://doi.org/10.1016/j.jfa.2016.02.022
  • [14] Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309-318. MR 701919
  • [15] Antonios D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003), no. 2, 631-636 (electronic). MR 1933356, https://doi.org/10.1090/S0002-9939-02-06834-X
  • [16] G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3) 11 (1961), 419-433. MR 0129219
  • [17] M. H. Protter, A lower bound for the fundamental frequency of a convex region, Proc. Amer. Math. Soc. 81 (1981), no. 1, 65-70. MR 589137, https://doi.org/10.2307/2043987
  • [18] Yu. Safarov and D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, vol. 155, American Mathematical Society, Providence, RI, 1997. Translated from the Russian manuscript by the authors. MR 1414899
  • [19] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
  • [20] Hajime Urakawa, Lower bounds for the eigenvalues of the fixed vibrating membrane problems, Tohoku Math. J. (2) 36 (1984), no. 2, 185-189. MR 742593, https://doi.org/10.2748/tmj/1178228846
  • [21] M. van den Berg, A uniform bound on trace $ \,(e^{t\Delta })$ for convex regions in $ {\bf R}^{n}$ with smooth boundaries, Comm. Math. Phys. 92 (1984), no. 4, 525-530. MR 736409
  • [22] Timo Weidl, Improved Berezin-Li-Yau inequalities with a remainder term, Spectral theory of differential operators, Amer. Math. Soc. Transl. Ser. 2, vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 253-263. MR 2509788, https://doi.org/10.1090/trans2/225/17
  • [23] Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441-479 (German). MR 1511670, https://doi.org/10.1007/BF01456804

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35P15, 47A75

Retrieve articles in all journals with MSC (2010): 35P15, 47A75


Additional Information

Simon Larson
Affiliation: Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Email: simla@math.kth.se

DOI: https://doi.org/10.1090/proc/13386
Keywords: Dirichlet-Laplace operator, semi-classical estimates, Berezin--Li--Yau inequality
Received by editor(s): December 15, 2015
Received by editor(s) in revised form: December 31, 2015, July 13, 2016, and July 15, 2016
Published electronically: November 18, 2016
Communicated by: Michael Hitrik
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society