Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convex sets and second order systems with nonlocal boundary conditions at resonance


Authors: Jean Mawhin and Katarzyna Szymańska-Dȩbowska
Journal: Proc. Amer. Math. Soc. 145 (2017), 2023-2032
MSC (2010): Primary 34B10; Secondary 34B15, 47H11
DOI: https://doi.org/10.1090/proc/13569
Published electronically: January 26, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The solvability of the resonant nonlocal boundary value problem

$\displaystyle x'' =f(t,x,x'),\quad x(0)=0, \quad x'(1)=\int _{0 }^{1}x'(s)dg(s),$

with $ f : [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ continuous, $ g =$$ \mbox {diag}(g_1,\ldots ,g_n)$, $ g_i : [0,1] \to \mathbb{R}$ of bounded variation, $ \int _0^1dg_i(s)=1$ $ (i=1,\dots ,n)$, is studied using the Leray-Schauder continuation theorem. The a priori estimates follow from the existence of an open bounded convex subset $ C \subset \mathbb{R}^n$, such that, for each $ t \in [0,1]$ and $ x \in \overline C$, the vector fields $ f(t,x,\cdot )$ satisfy suitable geometrical conditions on $ \partial C$. The special cases where $ C$ is a ball or a parallelotope are considered.

References [Enhancements On Off] (What's this?)

  • [1] Jifeng Chu and Zhongcheng Zhou, Positive solutions and eigenvalues of nonlocal boundary-value problems, Electron. J. Differential Equations (2005), No. 86, 9 pp. (electronic). MR 2162247
  • [2] Ivar Ekeland and Roger Témam, Convex analysis and variational problems, Corrected reprint of the 1976 English edition, Classics in Applied Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. Translated from the French. MR 1727362
  • [3] Robert E. Gaines and Jean L. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568, Springer-Verlag, Berlin-New York, 1977. MR 0637067
  • [4] Chaitan P. Gupta, A second order $ m$-point boundary value problem at resonance, Nonlinear Anal. 24 (1995), no. 10, 1483-1489. MR 1327929, https://doi.org/10.1016/0362-546X(94)00204-U
  • [5] Chaitan P. Gupta, Existence theorems for a second order $ m$-point boundary value problem at resonance, Internat. J. Math. Math. Sci. 18 (1995), no. 4, 705-710. MR 1347059, https://doi.org/10.1155/S0161171295000901
  • [6] Chaitan P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos, Existence results for $ m$-point boundary value problems, Differential Equations Dynam. Systems 2 (1994), no. 4, 289-298. MR 1386275
  • [7] Chaitan P. Gupta and Sergei Trofimchuk, Solvability of a multi-point boundary value problem of Neumann type, Abstr. Appl. Anal. 4 (1999), no. 2, 71-81. MR 1810319, https://doi.org/10.1155/S1085337599000093
  • [8] G. B. Gustafson and K. Schmitt, A note on periodic solutions for delay-differential systems, Proc. Amer. Math. Soc. 42 (1974), 161-166. MR 0326109
  • [9] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal, Convex analysis and minimization algorithms. I, Fundamentals, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305, Springer-Verlag, Berlin, 1993. MR 1261420
  • [10] G. L. Karakostas and P. Ch. Tsamatos, Positive solutions for a nonlocal boundary-value problem with increasing response, Electron. J. Differential Equations (2000), No. 73, 8 pp. (electronic). MR 1801638
  • [11] G. L. Karakostas and P. Ch. Tsamatos, On a nonlocal boundary value problem at resonance, J. Math. Anal. Appl. 259 (2001), no. 1, 209-218. MR 1836454, https://doi.org/10.1006/jmaa.2000.7411
  • [12] G. L. Karakostas and P. Ch. Tsamatos, Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem, Appl. Math. Lett. 15 (2002), no. 4, 401-407. MR 1902271, https://doi.org/10.1016/S0893-9659(01)00149-5
  • [13] G. L. Karakostas and P. Ch. Tsamatos, Positive solutions and nonlinear eigenvalue problems for retarded second order differential equations, Electron. J. Differential Equations (2002), No. 59, 11 pp. (electronic). MR 1911926
  • [14] Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45-78 (French). MR 1509338
  • [15] Xiaojie Lin, Existence of solutions to a nonlocal boundary value problem with nonlinear growth, Bound. Value Probl. (2011), Art. ID 416416, 15 pp. MR 2739198
  • [16] J. Mawhin, Topological degree methods in nonlinear boundary value problems, Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9-15, 1977, CBMS Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, Providence, R.I., 1979. MR 525202
  • [17] Katarzyna Szymańska-Debowska, The solvability of a nonlocal boundary value problem, Math. Slovaca 65 (2015), no. 5, 1027-1034. MR 3433052, https://doi.org/10.1515/ms-2015-0070

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34B10, 34B15, 47H11

Retrieve articles in all journals with MSC (2010): 34B10, 34B15, 47H11


Additional Information

Jean Mawhin
Affiliation: Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium
Email: jean.mawhin@uclouvain.be

Katarzyna Szymańska-Dȩbowska
Affiliation: Institute of Mathematics, Lódź University of Technology, 90-924 Lódź, ul. Wólczańska 215, Poland
Email: katarzyna.szymanska-debowska@p.lodz.pl

DOI: https://doi.org/10.1090/proc/13569
Keywords: Nonlocal boundary value problem; boundary value problem at resonance; Leray-Schnauder degree
Received by editor(s): January 20, 2016
Published electronically: January 26, 2017
Communicated by: Yingfei Yi
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society