Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Norm estimates for the Hardy operator in terms of $ B_p$ weights


Authors: Santiago Boza and Javier Soria
Journal: Proc. Amer. Math. Soc. 145 (2017), 2455-2465
MSC (2010): Primary 26D15, 42B25, 46E30
DOI: https://doi.org/10.1090/proc/13604
Published electronically: February 20, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the explicit dependence of the Hardy operator norm, acting on non-increasing functions in $ L^p(w)$ or $ L^{p,\infty }(w)$, in terms of the $ B_p$-constant of the weight $ w$.


References [Enhancements On Off] (What's this?)

  • [1] Miguel A. Ariño and Benjamin Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), no. 2, 727-735. MR 989570, https://doi.org/10.2307/2001699
  • [2] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
  • [3] Santiago Boza and Javier Soria, Solution to a conjecture on the norm of the Hardy operator minus the identity, J. Funct. Anal. 260 (2011), no. 4, 1020-1028. MR 2747011, https://doi.org/10.1016/j.jfa.2010.11.013
  • [4] Stephen M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253-272. MR 1124164, https://doi.org/10.2307/2154555
  • [5] María J. Carro, Alejandro García del Amo, and Javier Soria, Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc. 124 (1996), no. 3, 849-857. MR 1307501, https://doi.org/10.1090/S0002-9939-96-03214-5
  • [6] M. Carro, L. Pick, J. Soria, and V. D. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (2001), no. 3, 397-428. MR 1841071, https://doi.org/10.7153/mia-04-37
  • [7] María J. Carro and Javier Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), no. 2, 480-494. MR 1213148, https://doi.org/10.1006/jfan.1993.1042
  • [8] María J. Carro and Javier Soria, Boundedness of some integral operators, Canad. J. Math. 45 (1993), no. 6, 1155-1166. MR 1247539, https://doi.org/10.4153/CJM-1993-064-2
  • [9] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. MR 0284802
  • [10] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, Notas de Matemática [Mathematical Notes], 104, North-Holland Publishing Co., Amsterdam, 1985. MR 807149
  • [11] A. Gogatishvili, A. Kufner, and L.-E. Persson, Some new scales of weight characterizations of the class $ B_p$, Acta Math. Hungar. 123 (2009), no. 4, 365-377. MR 2506756, https://doi.org/10.1007/s10474-009-8132-z
  • [12] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
  • [13] Tuomas P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. MR 2912709, https://doi.org/10.4007/annals.2012.175.3.9
  • [14] Tuomas Hytönen and Carlos Pérez, Sharp weighted bounds involving $ A_\infty $, Anal. PDE 6 (2013), no. 4, 777-818. MR 3092729, https://doi.org/10.2140/apde.2013.6.777
  • [15] Andrei K. Lerner, An elementary approach to several results on the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2829-2833. MR 2399047, https://doi.org/10.1090/S0002-9939-08-09318-0
  • [16] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55. MR 0033449
  • [17] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384
  • [18] C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat. 35 (1991), no. 2, 429-447. MR 1201565, https://doi.org/10.5565/PUBLMAT_35291_07
  • [19] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical $ A_p$ characteristic, Amer. J. Math. 129 (2007), no. 5, 1355-1375. MR 2354322, https://doi.org/10.1353/ajm.2007.0036
  • [20] Stefanie Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1237-1249. MR 2367098, https://doi.org/10.1090/S0002-9939-07-08934-4
  • [21] Y. Sagher, Real interpolation with weights, Indiana Univ. Math. J. 30 (1981), no. 1, 113-121. MR 600037, https://doi.org/10.1512/iumj.1981.30.30010
  • [22] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), no. 2, 145-158. MR 1052631
  • [23] Javier Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 193, 93-103. MR 1617343, https://doi.org/10.1093/qjmath/49.193.93

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26D15, 42B25, 46E30

Retrieve articles in all journals with MSC (2010): 26D15, 42B25, 46E30


Additional Information

Santiago Boza
Affiliation: Department of Applied Mathematics IV, EETAC, Polytechnical University of Catalonia, E-08860 Castelldefels, Spain
Email: santiago.boza@upc.edu

Javier Soria
Affiliation: Department of Mathematics and Informatics, University of Barcelona, Gran Via 585, E-08007 Barcelona, Spain
Email: soria@ub.edu

DOI: https://doi.org/10.1090/proc/13604
Keywords: Hardy operator, $B_p$-weights.
Received by editor(s): May 26, 2016
Published electronically: February 20, 2017
Additional Notes: Both authors have been partially supported by the Spanish Government grants MTM2013-40985-P and MTM2016-75196-P and the Catalan autonomous government grant 2014SGR289.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society