Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Aubert duals of strongly positive discrete series and a class of unitarizable representations


Author: Ivan Matić
Journal: Proc. Amer. Math. Soc. 145 (2017), 3561-3570
MSC (2010): Primary 22E35, 22E55, 11F70
DOI: https://doi.org/10.1090/proc/13461
Published electronically: January 11, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G_n$ denote either the group $ Sp(n, F)$ or $ SO(2n+1, F)$ over a non-archimedean local field $ F$. We explicitly determine the Aubert duals of strongly positive discrete series representations of the group $ G_n$. This enables us to construct a large class of unitarizable representations of this group.


References [Enhancements On Off] (What's this?)

  • [1] James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650
  • [2] Anne-Marie Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif $ p$-adique, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179-2189 (French, with English summary). MR 1285969, https://doi.org/10.2307/2154931
  • [3] Anne-Marie Aubert, Erratum: ``Duality in the Grothendieck group of the category of finite-length smooth representations of a $ p$-adic reductive group'', [Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179-2189; MR1285969 (95i:22025)], Trans. Amer. Math. Soc. 348 (1996), no. 11, 4687-4690. MR 1390967 (97c:22019)
  • [4] Marcela Hanzer, The unitarizability of the Aubert dual of strongly positive square integrable representations, Israel J. Math. 169 (2009), 251-294. MR 2460906, https://doi.org/10.1007/s11856-009-0011-3
  • [5] Ivan Matić, Strongly positive representations of metaplectic groups, J. Algebra 334 (2011), 255-274. MR 2787663, https://doi.org/10.1016/j.jalgebra.2011.02.015
  • [6] Ivan Matić, Jacquet modules of strongly positive representations of the metaplectic group $ \widetilde {Sp(n)}$, Trans. Amer. Math. Soc. 365 (2013), no. 5, 2755-2778. MR 3020114, https://doi.org/10.1090/S0002-9947-2012-05725-4
  • [7] Ivan Matić and Marko Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), no. 3-4, 437-476. MR 3360752, https://doi.org/10.1007/s00229-015-0727-9
  • [8] Colette Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 295-336 (French, with English summary). MR 3220932, https://doi.org/10.1090/conm/614/12254
  • [9] Colette Mœglin and Marko Tadić, Construction of discrete series for classical $ p$-adic groups, J. Amer. Math. Soc. 15 (2002), no. 3, 715-786 (electronic). MR 1896238, https://doi.org/10.1090/S0894-0347-02-00389-2
  • [10] Colette Mœglin and Jean-Loup Waldspurger, Sur l'involution de Zelevinski, J. Reine Angew. Math. 372 (1986), 136-177. MR 863522 (88c:22019)
  • [11] Allan J. Silberger, Special representations of reductive $ p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571-587. MR 577138, https://doi.org/10.2307/1971110

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 22E35, 22E55, 11F70

Retrieve articles in all journals with MSC (2010): 22E35, 22E55, 11F70


Additional Information

Ivan Matić
Affiliation: Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia
Email: imatic@mathos.hr

DOI: https://doi.org/10.1090/proc/13461
Received by editor(s): February 9, 2016
Received by editor(s) in revised form: August 30, 2016
Published electronically: January 11, 2017
Communicated by: Alexander Braverman
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society