Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nielsen equivalence in Gupta-Sidki groups


Author: Aglaia Myropolska
Journal: Proc. Amer. Math. Soc. 145 (2017), 3331-3342
MSC (2010): Primary 20E05, 20E36, 20F05
DOI: https://doi.org/10.1090/proc/13612
Published electronically: April 6, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a group $ G$ generated by $ k$ elements, the Nielsen equivalence classes are defined as orbits of the action of $ \textrm {Aut} F_k$, the automorphism group of the free group of rank $ k$, on the set of generating $ k$-tuples of $ G$.

Let $ p\geq 3$ be prime and $ G_p$ the Gupta-Sidki $ p$-group. We prove that there are infinitely many Nielsen equivalence classes on generating pairs of $ G_p$.


References [Enhancements On Off] (What's this?)

  • [AC65] J. J. Andrews and M. L. Curtis, Free groups and handlebodies, Proc. Amer. Math. Soc. 16 (1965), 192-195. MR 0173241, https://doi.org/10.2307/2033843
  • [AKT13] Theofanis Alexoudas, Benjamin Klopsch, and Anitha Thillaisundaram, Maximal subgroups of multi-edge spinal groups, Groups Geom. Dyn. 10 (2016), no. 2, 619-648. MR 3513111, https://doi.org/10.4171/GGD/359
  • [DG99] Persi Diaconis and Ronald Graham, The graph of generating sets of an abelian group, Colloq. Math. 80 (1999), no. 1, 31-38. MR 1684568
  • [Dun63] M. J. Dunwoody, On $ T$-systems of groups, J. Austral. Math. Soc. 3 (1963), 172-179. MR 0153745
  • [Eva93] Martin J. Evans, Presentations of groups involving more generators than are necessary, Proc. London Math. Soc. (3) 67 (1993), no. 1, 106-126. MR 1218122, https://doi.org/10.1112/plms/s3-67.1.106
  • [Eva07] Martin J. Evans, Nielsen equivalence classes and stability graphs of finitely generated groups, Ischia group theory 2006, World Sci. Publ., Hackensack, NJ, 2007, pp. 103-119. MR 2405933 (2009g:20062)
  • [Gas55] Wolfgang Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr. 14 (1955), 249-252 (1956) (German). MR 0083993, https://doi.org/10.1002/mana.19550140406
  • [Gri80] R. I. Grigorčuk, On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 53-54 (Russian). MR 565099
  • [GS83a] Narain Gupta and Saïd Sidki, On the Burnside problem for periodic groups, Math. Z. 182 (1983), no. 3, 385-388. MR 696534, https://doi.org/10.1007/BF01179757
  • [GS83b] N. Gupta and Said Sidki, Some infinite $ p$-groups, Algebra i Logika 22 (1983), no. 5, 584-589 (English, with Russian summary). MR 759409
  • [GS84] N. Gupta and Said Sidki, Extension of groups by tree automorphisms, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 232-246. MR 767112 (86e:20047)
  • [Lub11] Alexander Lubotzky, Dynamics of $ {\rm Aut}(F_N)$ actions on group presentations and representations, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 609-643. MR 2807845
  • [Myr15] A. Myropolska, The class $ \mathcal {MN}$ of groups in which all maximal subgroups are normal, Preprint arXiv:1509.08090.
  • [Myr16] Aglaia Myropolska, Andrews-Curtis and Nielsen equivalence relations on some infinite groups, J. Group Theory 19 (2016), no. 1, 161-178. MR 3441132, https://doi.org/10.1515/jgth-2015-0031
  • [Nek05] Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164
  • [Nie18] J. Nielsen, Über die Isomorphismen unendlicher Gruppen ohne Relation, Math. Ann. 79 (1918), no. 3, 269-272 (German). MR 1511927, https://doi.org/10.1007/BF01458209
  • [NN51] Bernhard H. Neumann and Hanna Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1951), 106-125 (German). MR 0040297, https://doi.org/10.1002/mana.19500040112
  • [Oan11] Daniel Oancea, A note on Nielsen equivalence in finitely generated abelian groups, Bull. Aust. Math. Soc. 84 (2011), no. 1, 127-136. MR 2817667, https://doi.org/10.1017/S0004972711002279
  • [Pak01] Igor Pak, What do we know about the product replacement algorithm?, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 301-347. MR 1829489
  • [Per00] E. L. Pervova, Everywhere dense subgroups of a group of tree automorphisms, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 356-367 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 4(231) (2000), 339-350. MR 1841763
  • [Per02] E. L. Pervova, The congruence property of AT-groups, Algebra Logika 41 (2002), no. 5, 553-567, 634 (Russian, with Russian summary); English transl., Algebra Logic 41 (2002), no. 5, 306-313. MR 1953179, https://doi.org/10.1023/A:1020979720331
  • [Per05] E. L. Pervova, Maximal subgroups of some non locally finite $ p$-groups, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 1129-1150. MR 2197824, https://doi.org/10.1142/S0218196705002803
  • [Sid87] Said Sidki, On a $ 2$-generated infinite $ 3$-group: the presentation problem, J. Algebra 110 (1987), no. 1, 13-23. MR 904179, https://doi.org/10.1016/0021-8693(87)90034-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20E05, 20E36, 20F05

Retrieve articles in all journals with MSC (2010): 20E05, 20E36, 20F05


Additional Information

Aglaia Myropolska
Affiliation: Financial Engineering, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland

DOI: https://doi.org/10.1090/proc/13612
Received by editor(s): May 29, 2015
Received by editor(s) in revised form: September 20, 2016
Published electronically: April 6, 2017
Additional Notes: The author acknowledges the support of the Swiss National Science Foundation, grant 200021_144323
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society