Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A geometric inequality for convex free boundary hypersurfaces in the unit ball


Authors: Ben Lambert and Julian Scheuer
Journal: Proc. Amer. Math. Soc. 145 (2017), 4009-4020
MSC (2010): Primary 53C44, 58C35, 58J32
DOI: https://doi.org/10.1090/proc/13516
Published electronically: March 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the inverse mean curvature flow with a free boundary perpendicular to the sphere to prove a geometric inequality involving the Willmore energy for convex hypersurfaces of dimension $ n\geq 3$ with boundary on the sphere.


References [Enhancements On Off] (What's this?)

  • [1] Simon Brendle, A sharp bound for the area of minimal surfaces in the unit ball, Geom. Funct. Anal. 22 (2012), no. 3, 621-626. MR 2972603, https://doi.org/10.1007/s00039-012-0167-6
  • [2] Simon Brendle, Pei-Ken Hung, and Mu-Tao Wang, A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124-144. MR 3433631, https://doi.org/10.1002/cpa.21556
  • [3] Levi Lopes de Lima and Frederico Girão, An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality, Ann. Henri Poincaré 17 (2016), no. 4, 979-1002. MR 3472630, https://doi.org/10.1007/s00023-015-0414-0
  • [4] M. P. do Carmo and F. W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Differential Geometry 4 (1970), 133-144. MR 0266105
  • [5] Yuxin Ge, Guofang Wang, and Jie Wu, Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II, J. Differential Geom. 98 (2014), no. 2, 237-260. MR 3263518
  • [6] Yuxin Ge, Guofang Wang, Jie Wu, and Chao Xia, A Penrose inequality for graphs over Kottler space, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 755-782. MR 3311913, https://doi.org/10.1007/s00526-014-0732-y
  • [7] Claus Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299-314. MR 1064876
  • [8] Claus Gerhardt, Curvature problems, Series in Geometry and Topology, vol. 39, International Press, Somerville, MA, 2006. MR 2284727
  • [9] Claus Gerhardt, Inverse curvature flows in hyperbolic space, J. Differential Geom. 89 (2011), no. 3, 487-527. MR 2879249
  • [10] Claus Gerhardt, Curvature flows in the sphere, J. Differential Geom. 100 (2015), no. 2, 301-347. MR 3343834
  • [11] Mohammad Ghomi, Strictly convex submanifolds and hypersurfaces of positive curvature, J. Differential Geom. 57 (2001), no. 2, 239-271. MR 1879227
  • [12] Pengfei Guan and Junfang Li, The quermassintegral inequalities for $ k$-convex starshaped domains, Adv. Math. 221 (2009), no. 5, 1725-1732. MR 2522433, https://doi.org/10.1016/j.aim.2009.03.005
  • [13] Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153-179. MR 862046
  • [14] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. MR 1916951
  • [15] Kwok-Kun Kwong and Pengzi Miao, A new monotone quantity along the inverse mean curvature flow in $ \mathbb{R}^n$, Pacific J. Math. 267 (2014), no. 2, 417-422. MR 3207590, https://doi.org/10.2140/pjm.2014.267.417
  • [16] Ben Lambert and Julian Scheuer, The inverse mean curvature flow perpendicular to the sphere, Math. Ann. 364 (2016), no. 3-4, 1069-1093. MR 3466860, https://doi.org/10.1007/s00208-015-1248-2
  • [17] Haizhong Li, Yong Wei, and Changwei Xiong, A geometric inequality on hypersurface in hyperbolic space, Adv. Math. 253 (2014), 152-162. MR 3148549, https://doi.org/10.1016/j.aim.2013.12.003
  • [18] Peter Li and Shing Tung Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269-291. MR 674407, https://doi.org/10.1007/BF01399507
  • [19] Matthias Makowski and Julian Scheuer, Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere, preprint available at arxiv:1307.5764, to appear in Asian J. Math.
  • [20] Axel Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition, Calc. Var. Partial Differential Equations 4 (1996), no. 4, 385-407. MR 1393271, https://doi.org/10.1007/BF01190825
  • [21] Axel Stahl, Convergence of solutions to the mean curvature flow with a Neumann boundary condition, Calc. Var. Partial Differential Equations 4 (1996), no. 5, 421-441. MR 1402731, https://doi.org/10.1007/BF01246150
  • [22] John I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355-372. MR 1082861, https://doi.org/10.1007/BF02571249
  • [23] Alexander Volkmann, Free boundary problems governed by mean curvature, Ph.D. thesis, Freie Universität Berlin, 2014.
  • [24] Alexander Volkmann, A monotonicity formula for free boundary surfaces with respect to the unit ball, Comm. Anal. Geom. 24 (2016), no. 1, 195-221. MR 3514558, https://doi.org/10.4310/CAG.2016.v24.n1.a7
  • [25] Yong Wei and Changwei Xiong, Inequalities of Alexandrov-Fenchel type for convex hypersurfaces in hyperbolic space and in the sphere, Pacific J. Math. 277 (2015), no. 1, 219-239. MR 3393689, https://doi.org/10.2140/pjm.2015.277.219

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C44, 58C35, 58J32

Retrieve articles in all journals with MSC (2010): 53C44, 58C35, 58J32


Additional Information

Ben Lambert
Affiliation: University of Konstanz, Zukunftskolleg, Box 216, 78457 Konstanz, Germany
Email: benjamin.lambert@uni-konstanz.de

Julian Scheuer
Affiliation: Albert-Ludwigs-Universität, Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany
Email: julian.scheuer@math.uni-freiburg.de

DOI: https://doi.org/10.1090/proc/13516
Keywords: Inverse mean curvature flow, Free boundary problem, Geometric inequality, Willmore functional
Received by editor(s): June 21, 2016
Received by editor(s) in revised form: September 27, 2016
Published electronically: March 27, 2017
Communicated by: Lei Ni
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society