Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A rigidity property of local cohomology modules


Authors: Enrico Sbarra and Francesco Strazzanti
Journal: Proc. Amer. Math. Soc. 145 (2017), 4099-4110
MSC (2010): Primary 13D45, 13A02; Secondary 13C13
DOI: https://doi.org/10.1090/proc/13697
Published electronically: June 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The relationships between the homological properties and the invariants of $ I$, Gin$ (I)$ and $ I^{\rm\, lex}$ have been studied extensively over the past decades. A result of A. Conca, J. Herzog and T. Hibi points out some rigid behaviours of their Betti numbers. In this work we establish a local cohomology counterpart of their theorem. To this end, we make use of properties of sequentially Cohen-Macaulay modules and we study a generalization of such concept by introducing what we call partially sequentially Cohen-Macaulay modules, which might be of interest by themselves.


References [Enhancements On Off] (What's this?)

  • [ArHeHi] Annetta Aramova, Jürgen Herzog, and Takayuki Hibi, Ideals with stable Betti numbers, Adv. Math. 152 (2000), no. 1, 72-77. MR 1762120, https://doi.org/10.1006/aima.1998.1888
  • [BaNoTh] Eric Babson, Isabella Novik, and Rekha Thomas, Reverse lexicographic and lexicographic shifting, J. Algebraic Combin. 23 (2006), no. 2, 107-123. MR 2223682, https://doi.org/10.1007/s10801-006-6919-3
  • [Bi] Anna Maria Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 2317-2334. MR 1218500, https://doi.org/10.1080/00927879308824679
  • [BrHe] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1998. MR 1251956
  • [CaSb] Giulio Caviglia and Enrico Sbarra, Zero-generic initial ideals, Manuscripta Math. 148 (2015), no. 3-4, 507-520. MR 3414490, https://doi.org/10.1007/s00229-015-0748-4
  • [Co] Aldo Conca, Koszul homology and extremal properties of Gin and Lex, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2945-2961. MR 2052603, https://doi.org/10.1090/S0002-9947-03-03393-2
  • [CoHeHi] Aldo Conca, Jürgen Herzog, and Takayuki Hibi, Rigid resolutions and big Betti numbers, Comment. Math. Helv. 79 (2004), no. 4, 826-839. MR 2099124, https://doi.org/10.1007/s00014-004-0812-2
  • [Go] Afshin Goodarzi, Dimension filtration, sequential Cohen-Macaulayness and a new polynomial invariant of graded algebras, J. Algebra 456 (2016), 250-265. MR 3484143, https://doi.org/10.1016/j.jalgebra.2016.01.045
  • [Gr] Mark L. Green, Generic initial ideals, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 119-186. MR 1648665
  • [HeHi] Jürgen Herzog and Takayuki Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141-153. MR 1684555
  • [HeHi1] Jürgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. MR 2724673
  • [HeSb] Jürgen Herzog and Enrico Sbarra, Sequentially Cohen-Macaulay modules and local cohomology, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 327-340. MR 1940671
  • [Hu] Heather A. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 2335-2350. MR 1218501, https://doi.org/10.1080/00927879308824680
  • [MuHi] Satoshi Murai and Takayuki Hibi, Gin and lex of certain monomial ideals, Math. Scand. 99 (2006), no. 1, 76-86. MR 2273785, https://doi.org/10.7146/math.scand.a-15000
  • [MuHi1] Satoshi Murai and Takayuki Hibi, Gotzmann ideals of the polynomial ring, Math. Z. 260 (2008), no. 3, 629-646. MR 2434473, https://doi.org/10.1007/s00209-007-0293-2
  • [MuHi2] Satoshi Murai and Takayuki Hibi, The depth of an ideal with a given Hilbert function, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1533-1538. MR 2373580, https://doi.org/10.1090/S0002-9939-08-09067-9
  • [Pa] Keith Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J. Math. 40 (1996), no. 4, 564-585. MR 1415019
  • [Pe] Irena Peeva, Consecutive cancellations in Betti numbers, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3503-3507. MR 2084070, https://doi.org/10.1090/S0002-9939-04-07517-3
  • [Sb] Enrico Sbarra, Ideals with maximal local cohomology modules, Rend. Sem. Mat. Univ. Padova 111 (2004), 265-275. MR 2076743
  • [Sb1] Enrico Sbarra, Upper bounds for local cohomology for rings with given Hilbert function, Comm. Algebra 29 (2001), no. 12, 5383-5409. MR 1872238, https://doi.org/10.1081/AGB-100107934
  • [Sc] Peter Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Commutative algebra and algebraic geometry (Ferrara), Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, New York, 1999, pp. 245-264. MR 1702109, https://doi.org/10.1090/conm/239/03606
  • [Sta96] Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13D45, 13A02, 13C13

Retrieve articles in all journals with MSC (2010): 13D45, 13A02, 13C13


Additional Information

Enrico Sbarra
Affiliation: Dipartimento di Matematica, Università degli Studi di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
Email: enrico.sbarra@unipi.it

Francesco Strazzanti
Affiliation: Departamento de Álgebra, Facultad de Matemáticas, Universidad de Sevilla, Avda. Reina Mercedes s/n 41080 Sevilla, Spain
Email: francesco.strazzanti@gmail.com

DOI: https://doi.org/10.1090/proc/13697
Keywords: Hilbert functions, lexicographic ideals, generic initial ideals, consecutive cancellations, partially sequentially Cohen-Macaulay modules, local cohomology, Bj\"orner-Wachs polynomial.
Received by editor(s): November 9, 2015
Published electronically: June 16, 2017
Additional Notes: The first author was partially supported by PRA project 2015-16 “Geometria, Algebra e Combinatoria di Spazi di Moduli e Configurazioni”, University of Pisa.
The second author was partially supported by MTM2013-46231-P (Ministerio de Economía y Competitividad), FEDER, and the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA-INDAM)
Communicated by: Irena Peeva
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society