Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Simple weak modules for the fixed point subalgebra of the Heisenberg vertex operator algebra of rank $ 1$ by an automorphism of order $ 2$ and Whittaker vectors


Author: Kenichiro Tanabe
Journal: Proc. Amer. Math. Soc. 145 (2017), 4127-4140
MSC (2010): Primary 17B69; Secondary 17B68
DOI: https://doi.org/10.1090/proc/13767
Published electronically: July 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M(1)$ be the vertex operator algebra with the Virasoro element $ \omega $ associated to the Heisenberg algebra of rank $ 1$ and let $ M(1)^{+}$ be the subalgebra of $ M(1)$ consisting of the fixed points of an automorphism of $ M(1)$ of order $ 2$. We classify the simple weak $ M(1)^{+}$-modules with a non-zero element $ w$ such that for some integer $ s\geq 2$, $ \omega _iw\in \mathbb{C}w$ ( $ i=\lfloor s/2\rfloor +1,\lfloor s/2\rfloor +2,\ldots ,s-1$), $ \omega _{s}w\in \mathbb{C}^{\times }w$, and $ \omega _iw=0$ for all $ i>s$. The result says that any such simple weak $ M(1)^{+}$-module is isomorphic to some simple weak $ M(1)$-module or to some $ \theta $-twisted simple weak $ M(1)$-module.


References [Enhancements On Off] (What's this?)

  • [1] Toshiyuki Abe and Chongying Dong, Classification of irreducible modules for the vertex operator algebra $ V^+_L$: general case, J. Algebra 273 (2004), no. 2, 657-685. MR 2037717, https://doi.org/10.1016/j.jalgebra.2003.09.043
  • [2] Dražen Adamović, Rencai Lü, and Kaiming Zhao, Whittaker modules for the affine Lie algebra $ A_1^{(1)}$, Adv. Math. 289 (2016), 438-479. MR 3439693, https://doi.org/10.1016/j.aim.2015.11.020
  • [3] D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra $ {\rm sl}(2)$, J. Mathematical Phys. 15 (1974), 350-359. MR 0357527, https://doi.org/10.1063/1.1666651
  • [4] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068-3071. MR 843307, https://doi.org/10.1073/pnas.83.10.3068
  • [5] Robbert Dijkgraaf, Cumrun Vafa, Erik Verlinde, and Herman Verlinde, The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), no. 3, 485-526. MR 1003430
  • [6] Chongying Dong and Robert L. Griess Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998), no. 1, 262-275. MR 1644007, https://doi.org/10.1006/jabr.1998.7498
  • [7] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387
  • [8] Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305-321. MR 1430435, https://doi.org/10.1215/S0012-7094-97-08609-9
  • [9] Chongying Dong and Kiyokazu Nagatomo, Classification of irreducible modules for the vertex operator algebra $ M(1)^+$, J. Algebra 216 (1999), no. 1, 384-404. MR 1694542, https://doi.org/10.1006/jabr.1998.7784
  • [10] Chongying Dong and Kiyokazu Nagatomo, Representations of vertex operator algebra $ V_L^+$ for rank one lattice $ L$, Comm. Math. Phys. 202 (1999), no. 1, 169-195. MR 1686535, https://doi.org/10.1007/s002200050578
  • [11] Chongying Dong and Kiyokazu Nagatomo, Classification of irreducible modules for the vertex operator algebra $ M(1)^+$. II. Higher rank, J. Algebra 240 (2001), no. 1, 289-325. MR 1830555, https://doi.org/10.1006/jabr.2000.8716
  • [12] E. Felińska, Z. Jaskólski, and M. Kosztołowicz, Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states, J. Math. Phys. 53 (2012), no. 3, 033504, DOI. 10.1063/1.3692188. MR 2798231
    Erratum, J. Math. Phys. 53 (2012), no. 12, 129902, DOI 10.1063/1.4771670. MR 3405927
  • [13] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
  • [14] D. Gaiotto, Asymptotically free $ \mathscr {N} = 2$ theories and irregular conformal blocks, Journal of Physics: Conference Series 462 (2013), 012014.
  • [15] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, J. High Energy Phys. 12 (2012), 050, front matter + 76. MR 3045283
  • [16] Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101-184. MR 507800, https://doi.org/10.1007/BF01390249
  • [17] James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933
  • [18] Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143-195. MR 1387738, https://doi.org/10.1016/0022-4049(95)00079-8
  • [19] Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203-236. MR 1372724, https://doi.org/10.1090/conm/193/02373
  • [20] Rencai Lü, Xiangqian Guo, and Kaiming Zhao, Irreducible modules over the Virasoro algebra, Doc. Math. 16 (2011), 709-721. MR 2861395
  • [21] Matthew Ondrus and Emilie Wiesner, Whittaker modules for the Virasoro algebra, J. Algebra Appl. 8 (2009), no. 3, 363-377. MR 2535995, https://doi.org/10.1142/S0219498809003370
  • [22] Kenichiro Tanabe and Hiromichi Yamada, The fixed point subalgebra of a lattice vertex operator algebra by an automorphism of order three, Pacific J. Math. 230 (2007), no. 2, 469-510. MR 2309169, https://doi.org/10.2140/pjm.2007.230.469
  • [23] Kenichiro Tanabe and Hiromichi Yamada, Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three, J. Math. Soc. Japan 65 (2013), no. 4, 1169-1242. MR 3127822, https://doi.org/10.2969/jmsj/06541169
  • [24] Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237-302. MR 1317233, https://doi.org/10.1090/S0894-0347-96-00182-8

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B69, 17B68

Retrieve articles in all journals with MSC (2010): 17B69, 17B68


Additional Information

Kenichiro Tanabe
Affiliation: Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
Email: ktanabe@math.sci.hokudai.ac.jp

DOI: https://doi.org/10.1090/proc/13767
Keywords: Vertex operator algebras, weak modules, Whittaker vectors
Received by editor(s): September 15, 2016
Published electronically: July 7, 2017
Additional Notes: The author’s research was partially supported by Grant-in-Aid (No. 15K04770) for Scientific Research, JSPS
Communicated by: Kailash Misra
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society