Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Smooth compactness of $ f$-minimal hypersurfaces with bounded $ f$-index


Authors: Ezequiel Barbosa, Ben Sharp and Yong Wei
Journal: Proc. Amer. Math. Soc. 145 (2017), 4945-4961
MSC (2010): Primary 53C42, 53C21
DOI: https://doi.org/10.1090/proc/13628
Published electronically: May 26, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (M^{n+1},g,e^{-f}d\mu )$ be a complete smooth metric measure space with $ 2\leq n\leq 6$ and Bakry-Émery Ricci curvature bounded below by a positive constant. We prove a smooth compactness theorem for the space of complete embedded $ f$-minimal hypersurfaces in $ M$ with uniform upper bounds on $ f$-index and weighted volume. As a corollary, we obtain a smooth compactness theorem for the space of embedded self-shrinkers in $ \mathbb{R}^{n+1}$ with $ 2\leq n\leq 6$. We also prove some estimates on the $ f$-index of $ f$-minimal hypersurfaces.


References [Enhancements On Off] (What's this?)

  • [1] Sigurd B. Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 21-38. MR 1167827
  • [2] Simon Brendle, Embedded self-similar shrinkers of genus 0, Ann. of Math. (2) 183 (2016), no. no. 2, 715-728. MR 3450486
  • [3] Marcio Batista and Heudson Mirandola, Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces, Annali di Matematica, online first, doi:10.1007/s10231-014-0449-8.
  • [4] Huai-Dong Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1-38. MR 2648937
  • [5] Huai-Dong Cao and Haizhong Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differential Equations 46 (2013), no. no. 3-4, 879-889. MR 3018176
  • [6] Marcos P. Cavalcante and José M. Espinar, Halfspace type theorems for self-shrinkers, Bull. Lond. Math. Soc. 48 (2016), no. no. 2, 242-250. MR 3483061
  • [7] Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR 2780140
  • [8] Tobias H. Colding and William P. Minicozzi II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), no. no. 2, 463-475. MR 2914856
  • [9] Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. no. 2, 755-833. MR 2993752
  • [10] Hyeong In Choi and Richard Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), no. no. 3, 387-394. MR 807063
  • [11] Hyeong In Choi and Ai Nung Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom. 18 (1983), no. no. 3, 559-562. MR 723817
  • [12] Shiu Yuen Cheng and Johan Tysk, Schrödinger operators and index bounds for minimal submanifolds, Rocky Mountain J. Math. 24 (1994), no. no. 3, 977-996. MR 1307586
  • [13] Xu Cheng, Tito Mejia, and Detang Zhou, Stability and compactness for complete $ f$-minimal surfaces, Trans. Amer. Math. Soc. 367 (2015), no. no. 6, 4041-4059. MR 3324919
  • [14] Xu Cheng, Tito Mejia, and Detang Zhou, Eigenvalue estimate and compactness for closed $ f$-minimal surfaces, Pacific J. Math. 271 (2014), no. no. 2, 347-367. MR 3267533
  • [15] Xu Cheng and Detang Zhou, Stability properties and gap theorem for complete $ f$-minimal hypersurfaces, Bull. Braz. Math. Soc. (N.S.) 46 (2015), no. no. 2, 251-274. MR 3448944
  • [16] Qi Ding and Y. L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math. 17 (2013), no. no. 3, 443-456. MR 3119795
  • [17] Gregory Drugan, An immersed $ S^2$ self-shrinker, Trans. Amer. Math. Soc. 367 (2015), no. no. 5, 3139-3159. MR 3314804
  • [18] G. Drugan and S.J. Kleene, Immersed self-shrinkers, arXiv:1306.2383.
  • [19] Jose M. Espinar, Manifolds with density, applications and gradient Schrödinger operators, arXiv:1209.6162.
  • [20] Norio Ejiri and Mario Micallef, Comparison between second variation of area and second variation of energy of a minimal surface, Adv. Calc. Var. 1 (2008), no. no. 3, 223-239. MR 2458236
  • [21] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. no. 1, 121-132. MR 808112
  • [22] Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $ 3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199-211. MR 562550
  • [23] Pak Tung Ho, The structure of $ \phi $-stable minimal hypersurfaces in manifolds of nonnegative $ P$-scalar curvature, Math. Ann. 348 (2010), no. no. 2, 319-332. MR 2672304
  • [24] Caleb Hussey, Classification and analysis of low index Mean Curvature Flow self-shrinkers, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)-The Johns Hopkins University. MR 3103611
  • [25] Debora Impera and Michele Rimoldi, Stability properties and topology at infinity of $ f$-minimal hypersurfaces, Geom. Dedicata 178 (2015), 21-47. MR 3397480
  • [26] N. Kapouleas, S.J. Kleene, and N.M. Møller, Mean curvature self-shrinkers of high genus: non-compact examples, arXiv:1106.5454 to appear in J. Reine Angew. Math.
  • [27] Alexander Grigoryan, Heat kernels on weighted manifolds and applications, Cont. Math 398 (2006): 93-191.
  • [28] Gang Liu, Stable weighted minimal surfaces in manifolds with non-negative Bakry-Emery Ricci tensor, Comm. Anal. Geom. 21 (2013), no. no. 5, 1061-1079. MR 3152972
  • [29] Haizhong Li and Yong Wei, Classification and rigidity of self-shrinkers in the mean curvature flow, J. Math. Soc. Japan 66 (2014), no. no. 3, 709-734. MR 3238314
  • [30] Haizhong Li and Yong Wei, $ f$-minimal surface and manifold with positive $ m$-Bakry-Émery Ricci curvature, J. Geom. Anal. 25 (2015), no. no. 1, 421-435. MR 3299288
  • [31] Peter Li, Shing Tung Yau, and On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309-318. MR 701919
  • [32] Frank Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. no. 8, 853-858. MR 2161354
  • [33] N M. Møller, Closed self-shrinking surfaces in $ \mathbb{R}^3$ via the torus. arXiv:1111.7318
  • [34] Ovidiu Munteanu and Jiaping Wang, Smooth metric measure spaces with non-negative curvature, Comm. Anal. Geom. 19 (2011), no. no. 3, 451-486. MR 2843238
  • [35] Xuan Hien Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow, Part III, Duke Math. J. 163 (2014), no. no. 11, 2023-2056. MR 3263027
  • [36] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv math/0211159
  • [37] Stefano Pigola and Michele Rimoldi, Complete self-shrinkers confined into some regions of the space, Ann. Global Anal. Geom. 45 (2014), no. no. 1, 47-65. MR 3152087
  • [38] Ben Sharp, Compactness of minimal hypersurfaces with bounded index, arXiv: 1501.02703, accepted J. Diff. Geom.
  • [39] Richard Schoen and Leon Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34 (1981), no. 6, 741-797. MR 634285
  • [40] Guofang Wei and Will Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. no. 2, 377-405. MR 2577473
  • [41] Lu Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata 151 (2011), 297-303. MR 2780753

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C42, 53C21

Retrieve articles in all journals with MSC (2010): 53C42, 53C21


Additional Information

Ezequiel Barbosa
Affiliation: Departamento de Matemática, Universidade Federal de Minas Gerais (UFMG), Caixa Postal 702, 30123-970, Belo Horizonte, MG, Brazil
Email: ezequiel@mat.ufmg.br

Ben Sharp
Affiliation: Department of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: b.sharp@warwick.ac.uk

Yong Wei
Affiliation: Mathematical Sciences Institute, Australian National University, John Dedman Building 27, Union Lane, Canberra ACT 2601, Australia
Email: yong.wei@anu.edu.au

DOI: https://doi.org/10.1090/proc/13628
Received by editor(s): July 11, 2016
Received by editor(s) in revised form: November 24, 2016
Published electronically: May 26, 2017
Additional Notes: The first author was supported by FAPEMIG and CNPq grants. The second author was supported by André Neves’ ERC and Leverhulme trust grants. The third author was supported by Jason D Lotay’s EPSRC grant
Communicated by: Guofang Wei
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society