Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Metric entropy of $ q$-hulls in Banach spaces of type-$ p$


Authors: James Cockreham, Fuchang Gao and Yuhong Yang
Journal: Proc. Amer. Math. Soc. 145 (2017), 5205-5214
MSC (2010): Primary 47B06, 52A27, 41A46
DOI: https://doi.org/10.1090/proc/13627
Published electronically: June 22, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Optimal upper bound estimates for metric entropy of $ l_q$-hulls, $ 0<q\le 1$, are obtained for precompact sets in Banach spaces of type-$ p$.


References [Enhancements On Off] (What's this?)

  • [1] Keith Ball and Alain Pajor, The entropy of convex bodies with ``few'' extreme points, Geometry of Banach spaces (Strobl, 1989) London Math. Soc. Lecture Note Ser., vol. 158, Cambridge Univ. Press, Cambridge, 1990, pp. 25-32. MR 1110183
  • [2] Bernd Carl, Metric entropy of convex hulls in Hilbert spaces, Bull. London Math. Soc. 29 (1997), no. 4, 452-458. MR 1446564, https://doi.org/10.1112/S0024609397003044
  • [3] Bernd Carl, Ioanna Kyrezi, and Alain Pajor, Metric entropy of convex hulls in Banach spaces, J. London Math. Soc. (2) 60 (1999), no. 3, 871-896. MR 1753820, https://doi.org/10.1112/S0024610799008005
  • [4] Jakob Creutzig and Ingo Steinwart, Metric entropy of convex hulls in type $ p$ spaces--the critical case, Proc. Amer. Math. Soc. 130 (2002), no. 3, 733-743. MR 1866028, https://doi.org/10.1090/S0002-9939-01-06256-6
  • [5] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis 1 (1967), 290-330. MR 0220340
  • [6] D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators, Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. MR 1410258
  • [7] Simon Foucart, Alain Pajor, Holger Rauhut, and Tino Ullrich, The Gelfand widths of $ \ell _p$-balls for $ 0<p\leq 1$, J. Complexity 26 (2010), no. 6, 629-640. MR 2735423, https://doi.org/10.1016/j.jco.2010.04.004
  • [8] Fuchang Gao, Metric entropy of convex hulls, Israel J. Math. 123 (2001), 359-364. MR 1835305, https://doi.org/10.1007/BF02784136
  • [9] Fuchang Gao, Entropy of absolute convex hulls in Hilbert spaces, Bull. London Math. Soc. 36 (2004), no. 4, 460-468. MR 2069008, https://doi.org/10.1112/S0024609304003121
  • [10] Fuchang Gao, Optimality of CKP-inequality in the critical case, Proc. Amer. Math. Soc. 142 (2014), no. 3, 909-914. MR 3148525, https://doi.org/10.1090/S0002-9939-2013-11825-3
  • [11] Fuchang Gao, Ching-Kang Ing, and Yuhong Yang, Metric entropy and sparse linear approximation of $ \ell _q$-hulls for $ 0<q\leq 1$, J. Approx. Theory 166 (2013), 42-55. MR 3003947, https://doi.org/10.1016/j.jat.2012.10.002
  • [12] Fuchang Gao, Wenbo V. Li, and Jon A. Wellner, How many Laplace transforms of probability measures are there?, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4331-4344. MR 2680059, https://doi.org/10.1090/S0002-9939-2010-10448-3
  • [13] Evarist Giné and Joel Zinn, Some limit theorems for empirical processes, Ann. Probab. 12 (1984), no. 4, 929-998. With discussion. MR 757767
  • [14] James Kuelbs and Wenbo V. Li, Metric entropy and the small ball problem for Gaussian measures, J. Funct. Anal. 116 (1993), no. 1, 133-157. MR 1237989, https://doi.org/10.1006/jfan.1993.1107
  • [15] G. Pisier, Remarques sur un résultat non publié de B. Maurey, Seminar on Functional Analysis, 1980-1981, École Polytech., Palaiseau, 1981, pp. Exp. No. V, 13 (French). MR 659306
  • [16] S.A. Smoljak, The $ \epsilon $-entropy of some classes $ E_s^{\alpha ,k}(B)$ and $ W_s^\alpha (B)$ in the $ L_2$ metric, Dolk. Akad. Nauk SSSR 131, 30-33. MR 0123130
  • [17] A. F. Timan, Theory of approximation of functions of a real variable, translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar. International Series of Monographs in Pure and Applied Mathematics, Vol. 34, A Pergamon Press Book. The Macmillan Co., New York, 1963. MR 0192238

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B06, 52A27, 41A46

Retrieve articles in all journals with MSC (2010): 47B06, 52A27, 41A46


Additional Information

James Cockreham
Affiliation: Department of Mathematics, University of Idaho, Moscow, Idaho 83844-1103
Email: jmcockreham@alaska.edu

Fuchang Gao
Affiliation: Department of Mathematics, University of Idaho, Moscow, Idaho 83844-1103
Email: fuchang@uidaho.edu

Yuhong Yang
Affiliation: School of Statistics, University of Minnesota, Minneapolis, Minnesota 55455
Email: yyang@stat.umn.edu

DOI: https://doi.org/10.1090/proc/13627
Received by editor(s): November 2, 2015
Received by editor(s) in revised form: December 19, 2016
Published electronically: June 22, 2017
Additional Notes: The research of the second author was partially supported by a grant from the Simons Foundation, #246211.
The research of the third author was partially supported by the National Natural Science Foundation of China, #61572109
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society