Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the cut locus of free, step two Carnot groups


Authors: Luca Rizzi and Ulysse Serres
Journal: Proc. Amer. Math. Soc. 145 (2017), 5341-5357
MSC (2010): Primary 53C17, 49J15
DOI: https://doi.org/10.1090/proc/13658
Published electronically: June 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we study the cut locus of the free, step two Carnot groups $ \mathbb{G}_k$ with $ k$ generators, equipped with their left-invariant Carnot-
Carathéodory metric. In particular, we disprove the conjectures on the shape of the cut loci proposed in works by Myasnichenko and Montanari and Morbidelli, by exhibiting sets of cut points $ C_k \subset \mathbb{G}_k$ which, for $ k \geq 4$, are strictly larger than conjectured ones. While the latter were, respectively, smooth semi-algebraic sets of codimension $ \Theta (k^2)$ and semi-algebraic sets of codimension $ \Theta (k)$, the sets $ C_k$ are semi-algebraic and have codimension $ 2$, yielding the best possible lower bound valid for all $ k$ on the size of the cut locus of $ \mathbb{G}_k$.

Furthermore, we study the relation of the cut locus with the so-called abnormal set. In the low dimensional cases, it is known that

$\displaystyle \textup {Abn}_0(\mathbb{G}_k) = \overline {\textup {Cut}_0(\mathbb{G}_k)} \setminus \textup {Cut}_0(\mathbb{G}_k), \qquad k=2,3. $

For each $ k \geq 4$, instead, we show that the cut locus always intersects the abnormal set, and there are plenty of abnormal geodesics with finite cut time.

Finally, and as a straightforward consequence of our results, we derive an explicit lower bound for the small time heat kernel asymptotics at the points of $ C_k$.

The question whether $ C_k$ coincides with the cut locus for $ k\geq 4$ remains open.


References [Enhancements On Off] (What's this?)

  • [ABB12] A. Andrei Agrachev, Davide Barilari, and Ugo Boscain, On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differential Equations 43 (2012), no. 3-4, 355-388.
  • [ABB16] A. Andrei Agrachev, Davide Barilari, and Ugo Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes). http://webusers.imj-prg.fr/$ \sim $davide.barilari/Notes.php (2016, November 20th).
  • [ABR13] A. A. Agrachev, D. Barilari, and L. Rizzi, Curvature: a variational approach, Memoirs of the AMS (in press) (2013-06), available at 1306.5318.
  • [AGL15] Andrei A. Agrachev, Alessandro Gentile, and Antonio Lerario, Geodesics and horizontal-path spaces in Carnot groups, Geom. Topol. 19 (2015), no. 3, 1569-1630. MR 3352244, https://doi.org/10.2140/gt.2015.19.1569
  • [Agr09] A. A. Agrachëv, Any sub-Riemannian metric has points of smoothness, Dokl. Akad. Nauk 424 (2009), no. 3, 295-298 (Russian); English transl., Dokl. Math. 79 (2009), no. 1, 45-47. MR 2513150, https://doi.org/10.1134/S106456240901013X
  • [Agr14] Andrei A. Agrachev, Some open problems, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., vol. 5, Springer, Cham, 2014, pp. 1-13. MR 3205092, https://doi.org/10.1007/978-3-319-02132-4_1
  • [Agr16] A. A. Agrachev, Tangent hyperplanes to subriemannian balls, J. Dyn. Control Syst. 22 (2016), no. 4, 683-692. MR 3538952, https://doi.org/10.1007/s10883-015-9296-1
  • [AM14] Christian Autenried and Irina Markina, Sub-Riemannian geometry of Stiefel manifolds, SIAM J. Control Optim. 52 (2014), no. 2, 939-959. MR 3180839, https://doi.org/10.1137/130922537
  • [AM16] Christian Autenried and Mauricio Godoy Molina, The sub-Riemannian cut locus of $ H$-type groups, Math. Nachr. 289 (2016), no. 1, 4-12. MR 3449096, https://doi.org/10.1002/mana.201400368
  • [AS15] A. A. Ardentov and Yu. L. Sachkov, Cut time in sub-Riemannian problem on Engel group, ESAIM Control Optim. Calc. Var. 21 (2015), no. 4, 958-988. MR 3395751, https://doi.org/10.1051/cocv/2015027
  • [BBCN16] Davide Barilari, Ugo Boscain, Gregoire Charlot, and Robert W. Neel, On the heat diffusion for generic riemannian and sub-riemannian structures, Int. Math. Res. Not. (2016).
  • [BBG12] Davide Barilari, Ugo Boscain, and Jean-Paul Gauthier, On 2-step, corank 2, nilpotent sub-Riemannian metrics, SIAM J. Control Optim. 50 (2012), no. 1, 559-582. MR 2888278, https://doi.org/10.1137/110835700
  • [BBN12] Davide Barilari, Ugo Boscain, and Robert W. Neel, Small-time heat kernel asymptotics at the sub-Riemannian cut locus, J. Differential Geom. 92 (2012), no. 3, 373-416. MR 3005058
  • [BBN16] Davide Barilari, Ugo Boscain, and Robert W. Neel, Heat kernel asymptotics on sub-Riemannian manifolds with symmetries and applications to the bi-Heisenberg group, ArXiv e-prints (2016-06), available at 1606.01159.
  • [BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509
  • [BGG96] Richard Beals, Bernard Gaveau, and Peter Greiner, The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes, Adv. Math. 121 (1996), no. 2, 288-345. MR 1402729, https://doi.org/10.1006/aima.1996.0054
  • [BR08] Ugo Boscain and Francesco Rossi, Invariant Carnot-Caratheodory metrics on $ S^3,\ {\rm SO}(3),\ {\rm SL}(2)$, and lens spaces, SIAM J. Control Optim. 47 (2008), no. 4, 1851-1878. MR 2421332, https://doi.org/10.1137/070703727
  • [BR17a] D. Barilari and L. Rizzi, Sharp measure contraction property for generalized H-type Carnot groups (2017-2), available at 1702.04401.
  • [BR17b] D. Barilari and L. Rizzi, Sub-Riemannian interpolation inequalities: Ideal structures (2017-5), available at 1705.05380.
  • [Bro82] R. W. Brockett, Control theory and singular Riemannian geometry, New directions in applied mathematics (Cleveland, Ohio, 1980) Springer, New York-Berlin, 1982, pp. 11-27. MR 661282
  • [BSB17] Yasir Awais Butt, Yuri L. Sachkov, and Aamer Iqbal Bhatti, Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $ \rm SH(2)$, J. Dyn. Control Syst. 23 (2017), no. 1, 155-195. MR 3584606, https://doi.org/10.1007/s10883-016-9337-4
  • [CR08] P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 4, 773-802. MR 2436793, https://doi.org/10.1016/j.anihpc.2007.07.005
  • [LDMO$^+$16] Enrico Le Donne, Richard Montgomery, Alessandro Ottazzi, Pierre Pansu, and Davide Vittone, Sard property for the endpoint map on some Carnot groups, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 6, 1639-1666. MR 3569245, https://doi.org/10.1016/j.anihpc.2015.07.004
  • [Gav77] Bernard Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2, 95-153. MR 0461589, https://doi.org/10.1007/BF02392235
  • [GJZ09] Jean-Paul Gauthier, Bronisław Jakubczyk, and Vladimir Zakalyukin, Motion planning and fastly oscillating controls, SIAM J. Control Optim. 48 (2009/10), no. 5, 3433-3448. MR 2599926, https://doi.org/10.1137/090761884
  • [Jea14] Frédéric Jean, Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, SpringerBriefs in Mathematics, Springer, Cham, 2014. MR 3308372
  • [Kat95] Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
  • [Léa87a] Rémi Léandre, Majoration en temps petit de la densité d'une diffusion dégénérée, Probab. Theory Related Fields 74 (1987), no. 2, 289-294 (French, with English summary). MR 871256, https://doi.org/10.1007/BF00569994
  • [Léa87b] Rémi Léandre, Minoration en temps petit de la densité d'une diffusion dégénérée, J. Funct. Anal. 74 (1987), no. 2, 399-414 (French). MR 904825, https://doi.org/10.1016/0022-1236(87)90031-0
  • [LR17] A. Lerario and L. Rizzi, How many geodesics join two points on a contact sub-Riemannian manifold?, Journal of Symplectic Geometry 15 (2017), no. 1, 247-305., https://doi.org/10.4310/JSG.2017.v15.n1.a7
  • [LS95] Wensheng Liu and Héctor J. Sussman, Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc. 118 (1995), no. 564, x+104. MR 1303093
  • [MM17] Annamaria Montanari and Daniele Morbidelli, On the subRiemannian cut locus in a model of free two-step Carnot group, Calc. Var. Partial Differential Equations 56 (2017), no. 2, 56:36. MR 3624932, https://doi.org/10.1007/s00526-017-1149-1
  • [MM16] Annamaria Montanari and Daniele Morbidelli, On the lack of semiconcavity of the subRiemannian distance in a class of Carnot groups, J. Math. Anal. Appl. 444 (2016), no. 2, 1652-1674. MR 3535781, https://doi.org/10.1016/j.jmaa.2016.07.032
  • [Mon02] Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002. MR 1867362
  • [MPAM06] F. Monroy-Pérez and A. Anzaldo-Meneses, The step-2 nilpotent $ (n,n(n+1)/2)$ sub-Riemannian geometry, J. Dyn. Control Syst. 12 (2006), no. 2, 185-216.
  • [Mya02] Oleg Myasnichenko, Nilpotent $ (3,6)$ sub-Riemannian problem, J. Dyn. Control Syst. 8 (2002), no. 4, 573-597. MR 1931899
  • [Mya06] Oleg Myasnichenko, Nilpotent $ (n,n(n+1)/2)$ sub-Riemannian problem, J. Dyn. Control Syst. 12 (2006), no. 1, 87-95. MR 2188395, https://doi.org/10.1007/s10450-006-9685-6
  • [Rif14] Ludovic Rifford, Sub-Riemannian geometry and optimal transport, SpringerBriefs in Mathematics, Springer, Cham, 2014. MR 3308395
  • [Riz16] Luca Rizzi, Measure contraction properties of Carnot groups, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 60, 20. MR 3502622, https://doi.org/10.1007/s00526-016-1002-y
  • [RT09] L. Rifford and E. Trélat, On the stabilization problem for nonholonomic distributions, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 2, 223-255. MR 2486932, https://doi.org/10.4171/JEMS/148
  • [Sac11] Yuri L. Sachkov, Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane, ESAIM Control Optim. Calc. Var. 17 (2011), no. 2, 293-321. MR 2801321, https://doi.org/10.1051/cocv/2010005
  • [Str86] Robert S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), no. 2, 221-263. MR 862049

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C17, 49J15

Retrieve articles in all journals with MSC (2010): 53C17, 49J15


Additional Information

Luca Rizzi
Affiliation: Université Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France
Email: luca.rizzi@univ-grenoble-alpes.fr

Ulysse Serres
Affiliation: Université Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 bd du 11 novembre 1918, F-69100 Villeurbanne, France
Email: ulysse.serres@univ-lyon1.fr

DOI: https://doi.org/10.1090/proc/13658
Received by editor(s): October 10, 2016
Received by editor(s) in revised form: January 9, 2017
Published electronically: June 16, 2017
Communicated by: Jeremy Tyson
Article copyright: © Copyright The Authors, 2017, All Rights Reserved

American Mathematical Society