Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness of solutions of mean field equations in $ R^2$


Authors: Changfeng Gui and Amir Moradifam
Journal: Proc. Amer. Math. Soc. 146 (2018), 1231-1242
MSC (2010): Primary 35B30, 35J60, 35A23, 35J91; Secondary 35B10, 35J99
DOI: https://doi.org/10.1090/proc/13814
Published electronically: December 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove uniqueness of solutions of mean field equations with general boundary conditions for the critical and subcritical total mass regime, extending the earlier results for null Dirichlet boundary condition. The proof is based on new Bol's inequalities for weak radial solutions obtained from rearrangement of the solutions.


References [Enhancements On Off] (What's this?)

  • [1] Thierry Aubin, Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), no. 2, 148-174 (French, with English summary). MR 534672, https://doi.org/10.1016/0022-1236(79)90052-1
  • [2] Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
  • [3] Daniele Bartolucci, Chang-Shou Lin, and Gabriella Tarantello, Uniqueness and symmetry results for solutions of a mean field equation on $ \mathbb{S}^2$ via a new bubbling phenomenon, Comm. Pure Appl. Math. 64 (2011), no. 12, 1677-1730. MR 2838340, https://doi.org/10.1002/cpa.20385
  • [4] D. Bartolucci and C. S. Lin, Uniqueness results for mean field equations with singular data, Comm. Partial Differential Equations 34 (2009), no. 7-9, 676-702. MR 2560297, https://doi.org/10.1080/03605300902910089
  • [5] Daniele Bartolucci and Chang-Shou Lin, Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter, Math. Ann. 359 (2014), no. 1-2, 1-44. MR 3201892, https://doi.org/10.1007/s00208-013-0990-6
  • [6] G. Bol, Isoperimetrische Ungleichungen für Bereiche auf Flächen, Jber. Deutsch. Math. Verein. 51 (1941), 219-257 (German). MR 0018858
  • [7] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419
  • [8] Sun-Yung A. Chang, Chiun-Chuan Chen, and Chang-Shou Lin, Extremal functions for a mean field equation in two dimension, Lectures on partial differential equations, New Stud. Adv. Math., vol. 2, Int. Press, Somerville, MA, 2003, pp. 61-93. MR 2055839
  • [9] Sun-Yung A. Chang and Paul C. Yang, Conformal deformation of metrics on $ S^2$, J. Differential Geom. 27 (1988), no. 2, 259-296. MR 925123
  • [10] Sun-Yung Alice Chang and Paul C. Yang, Prescribing Gaussian curvature on $ S^2$, Acta Math. 159 (1987), no. 3-4, 215-259. MR 908146, https://doi.org/10.1007/BF02392560
  • [11] Kuo-Shung Cheng and Chang-Shou Lin, On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in $ {\bf R}^2$, Math. Ann. 308 (1997), no. 1, 119-139. MR 1446203, https://doi.org/10.1007/s002080050068
  • [12] J. Feldman, R. Froese, N. Ghoussoub, and C. Gui, An improved Moser-Aubin-Onofri inequality for axially symmetric functions on $ S^2$, Calc. Var. Partial Differential Equations 6 (1998), no. 2, 95-104. MR 1606461, https://doi.org/10.1007/s005260050083
  • [13] Nassif Ghoussoub and Chang-Shou Lin, On the best constant in the Moser-Onofri-Aubin inequality, Comm. Math. Phys. 298 (2010), no. 3, 869-878. MR 2670931, https://doi.org/10.1007/s00220-010-1079-7
  • [14] C. Gui and A. Moradifam, The Sphere Covering Inequality and its applications, preprint.
  • [15] Changfeng Gui and Juncheng Wei, On a sharp Moser-Aubin-Onofri inequality for functions on $ S^2$ with symmetry, Pacific J. Math. 194 (2000), no. 2, 349-358. MR 1760786, https://doi.org/10.2140/pjm.2000.194.349
  • [16] Nassif Ghoussoub and Amir Moradifam, Functional inequalities: new perspectives and new applications, Mathematical Surveys and Monographs, vol. 187, American Mathematical Society, Providence, RI, 2013. MR 3052352
  • [17] Hiroshi Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 401-441. MR 672070
  • [18] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092. MR 0301504, https://doi.org/10.1512/iumj.1971.20.20101
  • [19] Chang-Shou Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Ration. Mech. Anal. 153 (2000), no. 2, 153-176. MR 1770683, https://doi.org/10.1007/s002050000085
  • [20] Chang-Shou Lin, Topological degree for mean field equations on $ S^2$, Duke Math. J. 104 (2000), no. 3, 501-536. MR 1781481, https://doi.org/10.1215/S0012-7094-00-10437-1
  • [21] Chang-Shou Lin and Marcello Lucia, One-dimensional symmetry of periodic minimizers for a mean field equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 2, 269-290. MR 2352519
  • [22] E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys. 86 (1982), no. 3, 321-326. MR 677001
  • [23] Takashi Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), no. 4, 367-397. MR 1186683, https://doi.org/10.1016/S0294-1449(16)30232-3

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B30, 35J60, 35A23, 35J91, 35B10, 35J99

Retrieve articles in all journals with MSC (2010): 35B30, 35J60, 35A23, 35J91, 35B10, 35J99


Additional Information

Changfeng Gui
Affiliation: Department of Mathematics, University of Texas at San Antonio, San Antonio, Texas 78249
Email: changfeng.gui@utsa.edu

Amir Moradifam
Affiliation: Department of Mathematics, University of California, Riverside, California 92521
Email: amirm@ucr.edu

DOI: https://doi.org/10.1090/proc/13814
Received by editor(s): December 26, 2016
Received by editor(s) in revised form: May 4, 2017, and May 8, 2017
Published electronically: December 7, 2017
Additional Notes: The first author was partially supported by a Simons Foundation Collaborative Grant (Award No 199305), NSFC grant No 11371128, and NSF grant DMS-1601885.
The second author is partially supported by NSF grant DMS-1715850.
Communicated by: Joachim Krieger
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society