Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reciprocity of Dedekind sums and the Euler class


Author: Claire Burrin
Journal: Proc. Amer. Math. Soc. 146 (2018), 1367-1376
MSC (2010): Primary 11F20; Secondary 30F35, 20J06
DOI: https://doi.org/10.1090/proc/13880
Published electronically: December 18, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Dedekind sums are arithmetic sums that were first introduced by Dedekind in the context of elliptic functions and modular forms, and later recognized to be surprisingly ubiquitous. Among the variations and generalizations introduced since, there is a construction of Dedekind sums for lattices in $ \mathrm {SL}_2(\mathrm {R})$. Building upon work of Asai, we prove the reciprocity law for these Dedekind sums, based on a concrete realization of the Euler class. As an application, we obtain an explicit formula for Dedekind sums on Hecke triangle groups in terms of continued fractions.


References [Enhancements On Off] (What's this?)

  • [Asa70] Tetsuya Asai, The reciprocity of Dedekind sums and the factor set for the universal covering group of $ {\mathrm{SL}}(2,\,R)$, Nagoya Math. J. 37 (1970), 67-80. MR 0260675
  • [Ati87] Michael Atiyah, The logarithm of the Dedekind $ \eta$-function, Math. Ann. 278 (1987), no. 1-4, 335-380. MR 909232, https://doi.org/10.1007/BF01458075
  • [BG92] J. Barge and É. Ghys, Cocycles d'Euler et de Maslov, Math. Ann. 294 (1992), no. 2, 235-265 (French). MR 1183404, https://doi.org/10.1007/BF01934324
  • [Bu017] Claire Burrin, Generalized Dedekind sums and equidistribution $ {\rm mod}\, 1$, J. Number Theory 172 (2017), 270-286. MR 3573154, https://doi.org/10.1016/j.jnt.2016.08.003
  • [De1892] R. Dedekind, Erläuterungen zu den Fragmenten XXVIII. In B. Riemann, Ges. Math. Werke, Leipzig, 1892, 466-478; Dedekind Ges. Werke I, 1930, 159-172.
  • [Die57] Ulrich Dieter, Beziehungen zwischen Dedekindschen Summen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 109-125 (German). MR 0087700, https://doi.org/10.1007/BF02941932
  • [Gol73] Larry Joel Goldstein, Dedekind sums for a Fuchsian group. I, Nagoya Math. J. 50 (1973), 21-47. MR 0318065
  • [Gol74] Larry Joel Goldstein, Errata for ``Dedekind sums for a Fuchsian group. I'' (Nagoya Math. J. 50 (1973), 21-47), Nagoya Math. J. 53 (1974), 235-237. MR 0347739
  • [Hej83] Dennis A. Hejhal, The Selberg trace formula for $ {\rm PSL}(2,\,{\bf R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197
  • [Hic77] Dean Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116. MR 0439725, https://doi.org/10.1515/crll.1977.290.113
  • [Pat75] S. J. Patterson, On the cohomology of Fuchsian groups, Glasgow Math. J. 16 (1975), no. 2, 123-140. MR 0422159, https://doi.org/10.1017/S0017089500002615
  • [Pet30] Hans Petersson, Theorie der automorphen Formen beliebiger reeller Dimension und ihre Darstellung durch eine neue Art Poincaréscher Reihen, Math. Ann. 103 (1930), no. 1, 369-436 (German). MR 1512629, https://doi.org/10.1007/BF01455702
  • [Pet38] Hans Petersson, Zur analytischen Theorie der Grenzkreisgruppen, Math. Ann. 115 (1938), no. 1, 23-67 (German). MR 1513171, https://doi.org/10.1007/BF01448925
  • [RaG72] Hans Rademacher and Emil Grosswald, Dedekind sums, The Mathematical Association of America, Washington, D.C., 1972. The Carus Mathematical Monographs, No. 16. MR 0357299

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F20, 30F35, 20J06

Retrieve articles in all journals with MSC (2010): 11F20, 30F35, 20J06


Additional Information

Claire Burrin
Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
Email: claire.burrin@rutgers.edu

DOI: https://doi.org/10.1090/proc/13880
Received by editor(s): November 29, 2016
Published electronically: December 18, 2017
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society