Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Grothendieck's standard conjectures of type $ C^+$ and $ D$


Author: Gonçalo Tabuada
Journal: Proc. Amer. Math. Soc. 146 (2018), 1389-1399
MSC (2010): Primary 14A22, 14C15, 14M12, 18D20, 18E30
DOI: https://doi.org/10.1090/proc/13955
Published electronically: January 12, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Grothendieck conjectured in the sixties that the even Künneth projector (with respect to a Weil cohomology theory) is algebraic and that the homological equivalence relation on algebraic cycles coincides with the numerical equivalence relation. In this note we extend these celebrated conjectures from smooth projective schemes to the broad setting of smooth proper dg categories. As an application, we prove that Grothendieck's conjectures are invariant under homological projective duality. This leads to a proof of Grothendieck's original conjectures in the case of intersections of quadrics and linear sections of determinantal varieties. Along the way, we also prove the case of quadric fibrations and intersections of bilinear divisors.


References [Enhancements On Off] (What's this?)

  • [1] Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004 (French, with English and French summaries). MR 2115000
  • [2] M. Bernardara, M. Marcolli, and G. Tabuada Some remarks concerning Voevodsky's nilpotence conjecture. To appear in J. Reine Angew. Math. Available at arXiv:1403.0876.
  • [3] Marcello Bernardara, Michele Bolognesi, and Daniele Faenzi, Homological projective duality for determinantal varieties, Adv. Math. 296 (2016), 181-209. MR 3490767, https://doi.org/10.1016/j.aim.2016.04.003
  • [4] A. Grothendieck, Standard conjectures on algebraic cycles, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 193-199. MR 0268189
  • [5] Bernhard Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151-190. MR 2275593
  • [6] Steven L. Kleiman, The standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3-20. MR 1265519, https://doi.org/10.1090/pspum/055.1/1265519
  • [7] S. L. Kleiman, Algebraic cycles and the Weil conjectures, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 359-386. MR 292838
  • [8] M. Kontsevich, Mixed noncommutative motives. Talk at the Workshop on Homological Mirror Symmetry, Miami, 2010. Notes available at www-math.mit.edu/auroux/frg/miami10-notes.
  • [9] Maxim Kontsevich, Notes on motives in finite characteristic, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 213-247. MR 2641191, https://doi.org/10.1007/978-0-8176-4747-6_7
  • [10] Maxim Kontsevich, Noncommutative motives. Talk at the IAS on the occasion of the $ 61^{\mathrm {st}}$ birthday of Pierre Deligne (2005). Available at http://video.ias.edu/Geometry-and-Arithmetic.
  • [11] A. Kuznetsov, Semiorthogonal decompositions in algebraic geometry. To appear in Proceedings of the ICM 2014. Available at 1404.3143.
  • [12] Alexander Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), no. 5, 1340-1369. MR 2419925, https://doi.org/10.1016/j.aim.2008.03.007
  • [13] Alexander Kuznetsov, Homological projective duality. Publ. Math. IHÉS (2007), no. 105, 157-220.
  • [14] Alexander Kuznetsov, Homological projective duality for Grassmannians of lines. Available at arXiv:math/0610957.
  • [15] David I. Lieberman, Numerical and homological equivalence of algebraic cycles on Hodge manifolds, Amer. J. Math. 90 (1968), 366-374. MR 0230336, https://doi.org/10.2307/2373533
  • [16] Valery A. Lunts and Dmitri O. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), no. 3, 853-908. MR 2629991, https://doi.org/10.1090/S0894-0347-10-00664-8
  • [17] Matilde Marcolli and Gonçalo Tabuada, Noncommutative numerical motives, Tannakian structures, and motivic Galois groups, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 3, 623-655. MR 3463419, https://doi.org/10.4171/JEMS/598
  • [18] J. V. Rennemo, The homological projective dual of $ \mathrm {Sym}^2\mathbb{P}(V)$. Available at arXiv:1509.04107.
  • [19] Gonçalo Tabuada, Noncommutative motives, with a preface by Yuri I. Manin, University Lecture Series, vol. 63, American Mathematical Society, Providence, RI, 2015. MR 3379910
  • [20] Gonçalo Tabuada and Michel Van den Bergh, Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu 14 (2015), no. 2, 379-403. MR 3315059, https://doi.org/10.1017/S147474801400005X
  • [21] Charles Vial, Algebraic cycles and fibrations, Doc. Math. 18 (2013), 1521-1553. MR 3158241

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14A22, 14C15, 14M12, 18D20, 18E30

Retrieve articles in all journals with MSC (2010): 14A22, 14C15, 14M12, 18D20, 18E30


Additional Information

Gonçalo Tabuada
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal; Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
Email: tabuada@math.mit.edu

DOI: https://doi.org/10.1090/proc/13955
Received by editor(s): May 20, 2016
Received by editor(s) in revised form: September 24, 2016, and January 23, 2017
Published electronically: January 12, 2018
Additional Notes: The author was partially supported by the NSF CAREER Award #1350472 and by the Portuguese Foundation for Science and Technology grant PEst-OE/MAT/UI0297/2014.
Communicated by: Jerzy Weyman
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society