Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the semisimplicity of the cyclotomic quiver Hecke algebra of type $ C$


Author: Liron Speyer
Journal: Proc. Amer. Math. Soc. 146 (2018), 1845-1857
MSC (2010): Primary 20C08, 05E10, 16G10, 81R10
DOI: https://doi.org/10.1090/proc/13876
Published electronically: December 4, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide criteria for the cyclotomic quiver Hecke algebras of type $ C$ to be semisimple. In the semisimple case, we construct the irreducible modules.


References [Enhancements On Off] (What's this?)

  • [AP14] Susumu Ariki and Euiyong Park, Representation type of finite quiver Hecke algebras of type $ A^{(2)}_{2\ell}$, J. Algebra 397 (2014), 457-488. MR 3119233, https://doi.org/10.1016/j.jalgebra.2013.09.005
  • [AP16a] Susumu Ariki and Euiyong Park, Representation type of finite quiver Hecke algebras of type $ D^{(2)}_{\ell+1}$, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3211-3242. MR 3451875, https://doi.org/10.1090/tran/6411
  • [AP16b] Susumu Ariki and Euiyong Park, Representation type of finite quiver Hecke algebras of type $ C^{(1)}_{\ell }$, Osaka J. Math. 53 (2016), no. 2, 463-489.
  • [APS17] Susumu Ariki, Euiyong Park, and Liron Speyer, Specht modules for quiver Hecke algebras of type $ C$, arXiv:1703.06425, 2017, preprint.
  • [BK09] Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451-484. MR 2551762, https://doi.org/10.1007/s00222-009-0204-8
  • [BKW11] Jonathan Brundan, Alexander Kleshchev, and Weiqiang Wang, Graded Specht modules, J. Reine Angew. Math. 655 (2011), 61-87. MR 2806105, https://doi.org/10.1515/CRELLE.2011.033
  • [FS16] Matthew Fayers and Liron Speyer, Generalised column removal for graded homomorphisms between Specht modules, J. Algebraic Combin. 44 (2016), no. 2, 393-432. MR 3533560, https://doi.org/10.1007/s10801-016-0674-x
  • [Kac90] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
  • [KK12] Seok-Jin Kang and Masaki Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math. 190 (2012), no. 3, 699-742. MR 2995184, https://doi.org/10.1007/s00222-012-0388-1
  • [KL09] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. MR 2525917, https://doi.org/10.1090/S1088-4165-09-00346-X
  • [Mat15] Andrew Mathas, Cyclotomic quiver Hecke algebras of type $ A$, Modular representation theory of finite and $ p$-adic groups, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 30, World Sci. Publ., Hackensack, NJ, 2015, pp. 165-266. MR 3495747, https://doi.org/10.1142/9789814651813_0005
  • [Rou08] Raphaël Rouquier, $ 2$-Kac-Moody algebras, arXiv:0812.5023, 2008, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20C08, 05E10, 16G10, 81R10

Retrieve articles in all journals with MSC (2010): 20C08, 05E10, 16G10, 81R10


Additional Information

Liron Speyer
Affiliation: Department of Pure and Applied Mathematics, Osaka University, Suita, Osaka 565-0871, Japan
Address at time of publication: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
Email: l.speyer@virginia.edu

DOI: https://doi.org/10.1090/proc/13876
Received by editor(s): April 26, 2017
Received by editor(s) in revised form: June 22, 2017
Published electronically: December 4, 2017
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society