Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lefschetz decompositions for eigenforms on a Kähler manifold


Author: Donu Arapura
Journal: Proc. Amer. Math. Soc. 146 (2018), 2277-2281
MSC (2010): Primary 58J50; Secondary 14C30
DOI: https://doi.org/10.1090/proc/14006
Published electronically: February 8, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the eigenspaces of the Laplacian $ \Delta _k$ on $ k$-forms on a compact Kähler manifold carry Hodge and Lefschetz decompositions. Among other consequences, we show that the positive part of the spectrum of $ \Delta _k$ lies in the spectrum of $ \Delta _{k+1}$ for $ k<\dim X$.


References [Enhancements On Off] (What's this?)

  • [BGM] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
  • [GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [G] Pierre Guerini, Prescription du spectre du laplacien de Hodge-de Rham, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 2, 270-303 (French, with English and French summaries). MR 2061782
  • [GS] Pierre Guerini and Alessandro Savo, Eigenvalue and gap estimates for the Laplacian acting on $ p$-forms, Trans. Amer. Math. Soc. 356 (2004), no. 1, 319-344. MR 2020035
  • [JSZ] Dmitry Jakobson, Alexander Strohmaier, and Steve Zelditch, On the spectrum of geometric operators on Kähler manifolds, J. Mod. Dyn. 2 (2008), no. 4, 701-718. MR 2449142
  • [T1] Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, J. Math. Soc. Japan 53 (2001), no. 2, 307-320. MR 1815136
  • [T2] Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and $ p$-forms, Ann. Global Anal. Geom. 23 (2003), no. 1, 13-27. MR 1952856
  • [W] R. O. Wells Jr., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 65, Springer-Verlag, New York-Berlin, 1980. MR 608414

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 58J50, 14C30

Retrieve articles in all journals with MSC (2010): 58J50, 14C30


Additional Information

Donu Arapura
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

DOI: https://doi.org/10.1090/proc/14006
Received by editor(s): August 9, 2017
Published electronically: February 8, 2018
Additional Notes: This research was partially supported by the NSF
Communicated by: Lei Ni
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society