Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Exposing boundary points of strongly pseudoconvex subvarieties in complex spaces


Authors: F. Deng, J. E. Fornæss and E. F. Wold
Journal: Proc. Amer. Math. Soc. 146 (2018), 2473-2487
MSC (2010): Primary 32C15, 32H02
DOI: https://doi.org/10.1090/proc/13693
Published electronically: March 9, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that all locally exposable points in a Stein compact in a complex space can be exposed along a given curve to a given real hypersurface. Moreover, the exposing map for a boundary point can be sufficiently close to the identity map outside any fixed neighborhood of the point. We also prove a parametric version of this result for bounded strongly pseudoconvex domains in $ \mathbb{C}^n$. For a bounded strongly pseudoconvex domain in $ \mathbb{C}^n$ and a given boundary point of it, we prove that there is a global coordinate change on the closure of the domain which is arbitrarily close to the identity map with respect to the $ C^1$-norm and maps the boundary point to a strongly convex boundary point.


References [Enhancements On Off] (What's this?)

  • [1] Rafael B. Andrist and Erlend Fornæss Wold, Free dense subgroups of holomorphic automorphisms, Math. Z. 280 (2015), no. 1-2, 335-346. MR 3343909, https://doi.org/10.1007/s00209-015-1425-8
  • [2] Fusheng Deng, Qi'an Guan, and Liyou Zhang, Properties of squeezing functions and global transformations of bounded domains, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2679-2696. MR 3449253, https://doi.org/10.1090/tran/6403
  • [3] K. Diederich, J. E. Fornæss, and E. F. Wold, Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type, J. Geom. Anal. 24 (2014), no. 4, 2124-2134. MR 3261733, https://doi.org/10.1007/s12220-013-9410-0
  • [4] John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529-569. MR 0422683, https://doi.org/10.2307/2373900
  • [5] Franc Forstnerič, Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003), no. 2, 143-189. MR 2051397, https://doi.org/10.1007/BF02392963
  • [6] Franc Forstnerič, Noncritical holomorphic functions on Stein spaces, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2511-2543. MR 3562350, https://doi.org/10.4171/JEMS/647
  • [7] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
  • [8] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
  • [9] F. Kutzschebauch, and E. F. Wold, Carleman approximation by holomorphic automorphisms of $ \mathbb{C}^n$. To appear in Crelle.
  • [10] John Milnor, Lectures on the $ h$-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. MR 0190942
  • [11] L. Simon, A splitting lemma for biholomoprhic maps on continuously varying domains, Master Thesis, University of Oslo, 2014.
  • [12] Dror Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135-160. MR 1829353, https://doi.org/10.1007/BF02921959

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32C15, 32H02

Retrieve articles in all journals with MSC (2010): 32C15, 32H02


Additional Information

F. Deng
Affiliation: Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway – and – School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Email: fushengd@math.uio.no

J. E. Fornæss
Affiliation: Department for Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
Email: john.fornass@math.ntnu.no

E. F. Wold
Affiliation: Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
Email: erlendfw@math.uio.no

DOI: https://doi.org/10.1090/proc/13693
Received by editor(s): July 10, 2016
Received by editor(s) in revised form: February 2, 2017, and February 7, 2017
Published electronically: March 9, 2018
Communicated by: Franc Forstneric
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society