Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A new theory of plastic flow


Author: D. Trifan
Journal: Quart. Appl. Math. 7 (1949), 201-211
MSC: Primary 73.2X
DOI: https://doi.org/10.1090/qam/30426
MathSciNet review: 30426
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. A. Ilyushin, Relation between the theory of Saint Venant-Lévy-Mises and the theory of small elastic-plastic deformations, Prikl. Mat. Mekh. 9, 207-218 (1945). MR 0013377
  • [2] G. H. Handelman, C. C. Lin, and W. Prager, On the mechanical behavior of metals in the strain-hardening range, Q. Appl. Math. 4, 397-407 (1947). MR 0021844
  • [3] D. Trifan, On the plastic bending of circular plates under uniform transverse loads, Q. Appl. Math. 6, 417-427 (1948). MR 0030427
  • [4] O. D. Kellogg, Foundations of potential theory, Murray Printing Co., New York, 1929.
  • [5] P. Hodge and W. Prager, A variational principle for plastic materials with strain-hardening, J. Math. Phys. 27, 1-10 (1948). MR 0025914
  • [6] A. Nadai, Plasticity, a mechanics of the plastic state of matter, McGraw-Hill Book Co., Inc., New York, 1931.
  • [7] A. Korn, Über die Lösung des Grundproblems der Elastizitätstheorie, Math. Ann. 75, 497-544 (1914). MR 1511808
  • [8] L. Lichtenstein, Über die erste Randwertaufgabe der Elastizitätstheorie, Math. Zeit. 20, 21-28 (1924). MR 1544661
  • [9] I. S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill Book Co., Inc., New York, 1946. MR 0075755

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.2X

Retrieve articles in all journals with MSC: 73.2X


Additional Information

DOI: https://doi.org/10.1090/qam/30426
Article copyright: © Copyright 1949 American Mathematical Society

American Mathematical Society