Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A method of solution of the equations of classical gas-dynamics using Einstein's equations

Author: G. C. McVittie
Journal: Quart. Appl. Math. 11 (1953), 327-336
MSC: Primary 76.1X
DOI: https://doi.org/10.1090/qam/57110
MathSciNet review: 57110
Full-text PDF

Abstract | Similar Articles | Additional Information

Abstract: It is known that Einstein's equations in general relativity provide explicit expressions for the density, pressure and velocity of a perfect gas in terms of the coefficients of the metric (the potentials) and hence in terms of the coordinates. Using orthogonal space-times, the expressions involve four potentials only between which consistency relations hold. It is shown how degeneration of the Einstein equations to Newtonian hydrodynamics provides general solutions of the equations of classical gas-dynamics for motions which may be either of constant or of variable entropy. The consistency relations are obtained in the general case. As an illustration, one-dimensional gas-dynamics are discussed and it is shown how the consistency relations are manipulated. The solution in which one or other of the Riemann variables is constant is obtained as a special case and motions of variable entropy are also attained.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.1X

Retrieve articles in all journals with MSC: 76.1X

Additional Information

DOI: https://doi.org/10.1090/qam/57110
Article copyright: © Copyright 1953 American Mathematical Society

American Mathematical Society