Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Similarity laws for supersonic flows

Authors: D. C. Pack and S. I. Pai
Journal: Quart. Appl. Math. 11 (1954), 377-384
MSC: Primary 76.1X
DOI: https://doi.org/10.1090/qam/57694
MathSciNet review: 57694
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The non-linear differential equation for the velocity potential of three-dimensional steady irrotational supersonic flow past wings of finite span has been investigated. It is found that the whole Mach number range from 1 to $ \infty $ may be divided into two regions (not strictly divided), in each of which similarity laws are obtained, with two parameters $ {K_1} = {\left( {{M^2} - 1} \right)^{1/2}}/{\tau ^n}$ and $ {K_2} = A{\left( {{M^2} - 1} \right)^{1/2}}$; $ \tau $ is the non-dimensional thickness ratio, $ A$ the aspect ratio of the wing, $ M$ the Mach number of the uniform stream in which the wing is placed. The factor $ n$ is given explicitly as a function of $ M$ and $ \tau $; in the lower region of Mach numbers it tends to $ 1/3$ as $ M \to 1$, for all $ \tau $, giving the ordinary transonic rule, and in the upper region it tends to $ - 1$ as $ M \to \infty $, for all $ \tau $, as in the ordinary hypersonic rule.

References [Enhancements On Off] (What's this?)

  • [1] H. Glauert, The effect of compressibility on the lift of an aerofoil, Proc. Roy. Soc. London (A) 118, 113 (1928).
  • [2] L. Prandtl, Über Strömungen, deren Geschwindigkeit mit der Schallgeschwindigkeit vergleichbar sind, J. Aer. Res. Inst., Univ. of Tokyo, No. 6 (1930).
  • [3] J. Ackeret, Über Luftkräfte bei sehr grossen Geschwindigkeiten, insbesondere bei ebenen Strömungen, Helv. Phys. Acta 1, 301 (1928).
  • [4] W. R. Sears, On compressible flow about bodies of revolution, Q. Appl. Math. 4, 191 (1946). MR 0017089
  • [5] W. R. Sears, A second note on compressible flow about bodies of revolution, Q. Appl. Math.5,89(1947). MR 0020393
  • [6] Th. von Kármán, The similarity law of transonic flow, J. Math. Phys. 26, 182 (1947). MR 0022504
  • [7] J. R. Spreiter, Similarity laws for transonic flow about wings of finite span, N.A.C.A., T.N. No. 2273 (1951). MR 0040912
  • [8] H. S. Tsien, Similarity laws of hypersonic flows, J. Math. Phys. 25, 247 (1946). MR 0018074
  • [9] W. D. Hayes, On hypersonic similitude, Q. Appl. Math. 5, 105 (1947). MR 0020904
  • [10] M. D. Van Dyke, The combined supersonic-hypersonic similarity rule, J. Aer. Sci. 18, 499 (1951).

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.1X

Retrieve articles in all journals with MSC: 76.1X

Additional Information

DOI: https://doi.org/10.1090/qam/57694
Article copyright: © Copyright 1954 American Mathematical Society

American Mathematical Society