Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Intermodulation products for $ \nu $-law biased wave rectifier for multiply frequency input


Author: E. Feuerstein
Journal: Quart. Appl. Math. 15 (1957), 183-192
MSC: Primary 78.0X
DOI: https://doi.org/10.1090/qam/92558
MathSciNet review: 92558
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The intermodulation products obtained by passing the sum of $ N + 1$ sinusoids of amplitudes $ {P_1}, \cdot \cdot \cdot {P_N}$ through a power rectifier of characteristic

$\displaystyle I = \left\{ {\begin{array}{*{20}{l}}0\\ {\alpha {{\left( {V - B} ... ...ray}\begin{array}{*{20}{l}} {V < B}\\ {V > B \qquad v > 0} \end{array}} \right.$

have been expressed by S. O. Rice and W. R. Bennett in terms of contour integrals involving products of Bessel functions. In this paper these integrals are rewritten as improper integrals on the real line plus constant terms. These integrals converge fast enough in many cases to be useful in numerical integration.

References [Enhancements On Off] (What's this?)

  • [1] W. R. Bennett, New results in the calculation of modulation products, Bell System Tech. J. 12, 228-243 (1933)
  • [2] W. R. Bennett, The biased ideal rectifier, Bell System Tech. J. 26, 139-169 (1947)
  • [3] S. O. Rice, Mathematical analysis of random noise, III and IV, Bell System Tech. J. 24, 52-162 (1945) MR 0011918
  • [4] H. Kaufman, Harmonic distortion in power law devices, Math. Mag. 28, 245-250 (1955) MR 1570742
  • [5] R. L. Sternberg and H. Kaufman, A general solution of the two-frequency modulation product problem I, J. Math. and Phys. 32, 233-242 (1953) MR 0061479
  • [6] R. L. Sternberg, A general solution of the two-frequency modulation product problem II, tables of the functions $ {A_{mn}}(h,k)$, J. Math. and Phys. 33, 68-79 (1954) MR 0061480
  • [7] R. L. Sternberg, A general solution of the two-frequency modulation product problem III, rectifiers and limiters, J. Math. and Phys. 33, 199-205 (1954) MR 0070453
  • [8] R. L. Sternberg, J. S. Shipman and H. Kaufman, Tables of Bennett functions for the two-frequency modulation product problem for the half-wave square law rectifier, Quart. J. Mech. and Appl. Math. 8, 457-467 (1955) MR 0074946
  • [9] R. L. Sternberg, J. S. Shipman and W. B. Thurston, Tables of Bennett functions for the two-frequency modulation product problem for the half-wave linear rectifier, Quart. J. Mech. Appl. Math. 7, 505-511 (1954) MR 0067571
  • [10] J. S. Shipman, On Middleton's paper, 'Some general results in the theory of noise through non-linear devices', Quart. Appl. Math., 18, 200-201 (1955) MR 0068773
  • [11] G. N. Watson, Theory of Bessel functions, The University Press, 1948
  • [12] W. Groebner and N. Hofreiter, Integraltafel, Part II, Springer Verlag, 1950
  • [13] E. J. Jahnke, and F. Emde, Tables of functions, Chap. VIII, Sec. 2, Dover Publications, 1946

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 78.0X

Retrieve articles in all journals with MSC: 78.0X


Additional Information

DOI: https://doi.org/10.1090/qam/92558
Article copyright: © Copyright 1957 American Mathematical Society

American Mathematical Society