Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

An application of algebraic topology: Kron's method of tearing


Author: J. Paul Roth
Journal: Quart. Appl. Math. 17 (1959), 1-24
MSC: Primary 65.00
DOI: https://doi.org/10.1090/qam/104337
MathSciNet review: 104337
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. B. Phillips and N. Wiener, Nets and the Dirichlet problem, J. Math. and Phys. 2, 105-124 (1923)
  • [2] L. A. Lyusternik, On electrical modelling of symmetric matrices, Uspehi Matem. Nauk (N.S.) 4 (1949), no. 2(30), 198–200 (Russian). MR 0031331
  • [3] Gabriel Kron, Numerical solution of ordinary and partial differential equations by means of equivalent circuits, J. Appl. Phys. 16 (1945), 172–186. MR 0011808
  • [4] Gabriel Kron, Equivalent circuit of the field equations of Maxwell. I, Proc. I. R. E. 32 (1944), 289–299. MR 0010695
  • [5] Gabriel Kron, Electric circuit models of the Schrödinger equation, Phys. Rev. (2) 67 (1945), 39–43. MR 0011806
  • [6] Gabriel Kron, Equivalent circuits of the elastic field, J. Appl. Math. 11 (1944), A-149–A-161. MR 0011249
  • [7] Gabriel Kron, Equivalent circuits of compressible and incompressible fluid flow fields, J. Aeronaut. Sci. 12 (1945), 221–231. MR 0011619
  • [8] Gabriel Kron, A set of principles to interconnect the solutions of physical systems, J. Appl. Phys. 24 (1953), 965–980. MR 0060913
  • [9] Gabriel Kron, Solution of complex nonlinear plastic structures by the method of tearing, J. Aero. Sci. 23 (1956), 557–562. MR 0081545
  • [10] R. v. Mises, On network methods in conformal mapping and in related problems, Construction and applications of conformal maps. Proceedings of a symposium, National Bureau of Standards, Appl. Math. Ser., No. 18, U. S. Government Printing Office, Washington, D. C., 1952, pp. 1–5. MR 0053616
  • [11] Garrett Birkhoff and J. B. Diaz, Non-linear network problems, Quart. Appl. Math. 13 (1956), 431–443. MR 0077398, https://doi.org/10.1090/S0033-569X-1956-77398-1
  • [12] A. K. Oppenheim, Radiation analysis by the network method, Trans. ASME 78, 75-735 (1956)
  • [13] A. K. Oppenheim, The engineering radiation problem—an example of the interaction between engineering and mathematics, Z. Angew. Math. Mech. 36 (1956), 81–93 (English, with German, French and Russian summaries). MR 0089707, https://doi.org/10.1002/zamm.19560360302
  • [14] F. H. Branin, Kron's method of tearing and its applications, Proc. 2nd Midwest Symp. Circuit Theory, Mich. State U., 1956, p. 2.1-2.79
  • [15] G. Kirchhoff, Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme führt wird, Poggendorf's Ann. Physik u. Chemie 72, 497-508 (1847)
  • [16] J. C. Maxwell, Electricity and Magnetism, vol. 1, p. 406, Oxford Univ. Press, 1892, 3rd edition
  • [17] H. Weyl, Repartition de corriente et uno red conductora, Revista matematica, Hispano-Americana 5, 153-164 (1923)
  • [18] Beno Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv. 17 (1945), 240–255 (German). MR 0013318, https://doi.org/10.1007/BF02566245
  • [19] G. Kron, Tensor analysis of rotating machinery. I, Presented winter convention of AIEE (1933)
  • [20] G. Kron, Non-Riemannian dynamics of rotating electrical machinery, J. Math, and Phys. 12, 103-194 (1934)
  • [21] G. Kron, The application of tensors to rotating electrical machinery, General Electric Review, Schenectady, New York, 1938
  • [22] G. Kron, Tensor analysis of networks, John Wiley & Sons, Inc., New York, 1939
  • [23] G. Kron, Analyse tensorielle appliquée a l'Art de l'Ingénieur, Bulletin de l'Association des Ingénieurs Electriciens sortis de l'Institut Electrotechnique Montefiore, No. 9, Sept. 1936; No. 10, Oct. 1936; No. 1, Jan. 1937; No. 2, Feb. 1937
  • [24] B. Hoffman, A mathematical interpretation of some work of Gabriel Kron, Mimeographed lectures delivered at Brown University, Nov. 12-13, 1943
  • [25] Banesh Hoffmann, Kron’s method of subspaces, Quart. Appl. Math. 2 (1944), 218–231. MR 0011596, https://doi.org/10.1090/S0033-569X-1944-11596-X
  • [26] Banesh Hoffmann, Kron’s non-Riemannian electrodynamics, Rev. Modern Physics 21 (1949), 535–540. MR 0034261
  • [27] J. L. Synge, The fundamental theorem of electrical networks, Quart. Appl. Math. 9 (1951), 113–127. MR 0042958, https://doi.org/10.1090/S0033-569X-1951-42958-X
  • [28] le Corbeiller, Matrix analysis of networks, John Wiley & Sons, Inc., New York, 1950
  • [29] J. P. Roth, An application of algebraic topology to numerical analysis: Kron's method I, Bull. Am. Math. Soc. 61, 183 (1955)
  • [30] J. P. Roth, An application of algebraic topology to numerical analysis: Kron's method II, Bull. Am. Math. Soc. 61, 183 (1955)
  • [31] J. P. Roth, An application of algebraic topology to numerical analysis: on the existence of a solution to the network problem, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 518–521. MR 0074094
  • [32] J. P. Roth, An application of algebraic topology to numerical analysis: on the existence of a solution to the network problem, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 518–521. MR 0074094
  • [33] J. P. Roth, An application of algebraic topology to numerical analysis: III. Three theorems on networks, Bull. Am. Math. Soc. 62, 32 (1956)
  • [34] H. Bode, Ein elektrisches Gerät zum Lösen von Systemen linearer Gleichungen, Z. angew. Math. u. Mech. 17, 213-223 (1937)
  • [35] G. Kron, Electric circuit models for the vibration spectrum of polyatomic molecules, J. Chem. Phys. 14, 19-31 (1946)
  • [36] Gabriel Kron, Tearing and interconnecting as a form of transformation, Quart. Appl. Math. 13 (1955), 147–159. MR 0073431, https://doi.org/10.1090/S0033-569X-1955-73431-7
  • [37] G. Kron, Electric-circuit models of the nuclear reactor, AIEE Trans. 1954
  • [38] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886
  • [39] H. Cartan, Lectures on algebraic topology. Mimeographed lecture notes, Harvard University, 1949-1950
  • [40] J. P. Roth, A method for finding the general solution to an arbitrary non-singular system of linear equations involving $ {n^3}/2$ multiplications, The Institute for Advanced Study, ECP Tech. Rept. 56-01, Jan. 1956 (To appear in Math. tables and other aids to computation)
  • [41] J. P. Roth, An application of algebraic topology to numerical analysis: IV. Tearing versus partitioning, Bull. Am. Math. Soc. 62, 45 (1956)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65.00

Retrieve articles in all journals with MSC: 65.00


Additional Information

DOI: https://doi.org/10.1090/qam/104337
Article copyright: © Copyright 1959 American Mathematical Society

American Mathematical Society