Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On a free boundary value problem of the heat equation

Author: Walter T. Kyner
Journal: Quart. Appl. Math. 17 (1959), 305-310
MSC: Primary 35.78
DOI: https://doi.org/10.1090/qam/123843
MathSciNet review: 123843
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. L. Miranker, A free boundary value problem for the heat equation, Quart. Appl. Math. 16, 121-130 (1958) MR 0094136
  • [2] I. I. Kolodner, Free boundary problem for the heat equation with applications to problems of change of phase, Communs. Pure Appl. Math. 9, 1-31 (1956) MR 0087011
  • [3] G. W. Evans, A note on the existence of a solution to a problem of Stefan, Quart. Appl. Math. 9, 185-193 (1951) MR 0043330
  • [4] J. Douglas and T. M. Gallie, On the numerical integration of a parabolic differential equation subject to a moving boundary condition, Duke Math. J. 22, 557-572 (1955) MR 0078755
  • [5] A. Datzeff, Sur la probleme lineaire de Stefan, Annuaire univ. Sofia, Livre I, 46, 271-325 (1950) MR 0047884
  • [6] G. Sestini, Esistenza di una soluzione in problemi analogli a quella di Stefan, Riv. Matematica Univ. Parma 3, 171-180 (1929) MR 0050783
  • [7] A. Friedman, Free boundary problems for parabolic equations, University of California (Berkeley) Tech. Rept. No. 28 (Oct. 1958)
  • [8] W. T. Kyner, An existence and uniqueness theorem for a nonlinear Stefan problem, J. Math. Mech. (in press) MR 0144082

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35.78

Retrieve articles in all journals with MSC: 35.78

Additional Information

DOI: https://doi.org/10.1090/qam/123843
Article copyright: © Copyright 1959 American Mathematical Society

American Mathematical Society