Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the theory of the plastic potential


Author: Hans Ziegler
Journal: Quart. Appl. Math. 19 (1961), 39-44
MSC: Primary 73.00
DOI: https://doi.org/10.1090/qam/122161
MathSciNet review: 122161
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. von Mises, Mechanik der plastischen Formänderung von Kristallen, Z. angew. Math. Mech. 8, 161 (1928).
  • [2] W. Prager, An introduction to plasticity, Addison-Wesley, Reading, Mass. 1959, p. 13. MR 0105910
  • [3] W. T. Koiter, General theorems for elastic-plastic solids, in I. N. Sneddon and R. Hill, Progress in solid mechanics, North-Holland Publishing Co., Amsterdam 1960, p. 172. MR 0112405
  • [4] D. C. Drucker, Some implications of work hardening and ideal plasticity, Quart. Appl. Math. 7, 411 (1949). MR 0034210
  • [5] J. F. W. Bishop and R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, Phys. Mag. (7) 42, 414 (1951). MR 0041691
  • [6] H. Ziegler, An attempt to generalize Onsager's principle, and its significance for rheological problems, Z. angew. Math. Phys. 9b, 748 (1958). MR 0094943
  • [7] L. Onsager, Reciprocal relations in irreversible processes, Phys. Rev. 37 (II), 405 (1931) and 38 (II), 2265 (1931).
  • [8] H. Ziegler, Ueber den Zusammenhang zwischen der Fliessbedingung eines starrplastischen Körpers und seinern Fliessgesetz, Z. angew. Math. Phys. 11, 413 (1960). MR 0122162
  • [9] H. Ziegler, Ueber den Zusammenhang zwischen der Fliessbedingung eines elastisch-plastischen Körpers und seinem Fliessgesetz, Z. angew. Math. Phys. 12, (1961). MR 0127632
  • [10] J. L. Synge, The hypercircle in mathematical physics, Cambridge University Press 1957, p. 37. MR 0097605

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.00

Retrieve articles in all journals with MSC: 73.00


Additional Information

DOI: https://doi.org/10.1090/qam/122161
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society