Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

High frequency vibrations of crystal plates


Author: R. D. Mindlin
Journal: Quart. Appl. Math. 19 (1961), 51-61
DOI: https://doi.org/10.1090/qam/99967
MathSciNet review: QAM99967
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. L. Cauchy, Sur l'équilibre et le mouvement d'une plaque élastique dont l'élasticité n'est pas la même dans tous les sens, Exercices de Mathématique 4, 1-14 (1829)
  • [2] Raymond D. Mindlin, Thickness-shear and flexural vibrations of crystal plates, J. Appl. Physics 22 (1951), 316–323. MR 0040949
  • [3] S. D. Poisson, Mémoire sur l'équilibre et le mouvement des corps élastiques, Mém. Acad. Sci., Paris, Ser. 2, 8 357-570 (1829)
  • [4] G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastichen Scheibe, Crelles J. 40, 51-88 (1850)
  • [5] H. Ekstein, High frequency vibrations of thin crystal plates, Phys. Rev. (2) 68 (1945), 11–23. MR 0013366
  • [6] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge University Press, London, 1927, p. 106
  • [7] R. D. Mindlin, An introduction to the mathematical theory of vibrations of elastic plates, U. S. Army Signal Corps, Fort Monmouth, N. J., Contract DA-36-039 SC-56772, pp. 6.02-6.04 (1955)
  • [8] W. Voigt, Lehrbuch der Krystallphysik, B. G. Teubner, Leipzig, 2nd ed., 1928, p. 698
  • [9] R. D. Mindlin, Influence of rotatory inertia and shear on flexural vibrations of isotropic, elastic plates, J. Appl. Mech. 18, 31-38 (1951)
  • [10] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Phil. Mag., Ser. 6, 41, 744-746 (1921)
  • [11] Eric Reissner, On bending of elastic plates, Quart. Appl. Math. 5 (1947), 55–68. MR 0020440, https://doi.org/10.1090/S0033-569X-1947-20440-X
  • [12] I. Koga, Thickness vibrations of piezoelectric oscillating crystals, Physics 3, 70-80 (1932)
  • [13] R. D. Mindlin, Waves and vibrations in isotropic, elastic plates, Structural mechanics, Pergamon Press, New York, 1960, pp. 199–232. MR 0115387
  • [14] W. P. Mason, Piezoelectric crystals and their application to ultrasonics, D. Van Nostrand Co., New York, 1950, Chap. VI
  • [15] R. Bechmann, Elastic and piezoelectric constants of aplha-quartz, Phys. Rev. 110, 1060-1061 (1958)
  • [16] E. G. Newman and R. D. Mindlin, Vibrations of a monoclinic crystal plate, J. Acoust. Soc. Amer. 29 (1957), 1206–1218. MR 0090261, https://doi.org/10.1121/1.1908747
  • [17] R. K. Kaul and R. D. Mindlin, Vibrations of a monoclinic crystal plate, II, (forthcoming)
  • [18] D. C. Gazis and R. D. Mindlin, Extensional vibrations and waves in a circular disk and a semi-infinite plate, J. Appl. Mech. 27 (1960), 541–547. MR 0119578
  • [19] R. D. Mindlin, Simple modes of vibration of crystals, J. Appl. Phys. 27 (1956), 1462–1466. MR 0083288


Additional Information

DOI: https://doi.org/10.1090/qam/99967
Article copyright: © Copyright 1961 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website