Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On a problem of minimum weight design


Author: Zenon Mróz
Journal: Quart. Appl. Math. 19 (1961), 127-135
MSC: Primary 73.49
DOI: https://doi.org/10.1090/qam/135327
MathSciNet review: 135327
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A problem of optimal design for perfectly plastic, isotropic structures is analyzed. It is shown that for such structures as plates or shells, an extremum of the volume, if it exists, is either a local maximum or a minimum.


References [Enhancements On Off] (What's this?)

  • [1] H. G. Hopkins and W. Prager, Limits of economy of material in plates, J. Appl. Mech. 22, 372-374 (1955)
  • [2] W. Prager, Minimum weight design of plates, De Ing. 67, 141-142 (1955)
  • [3] W. Freiberger and B. Tekinalp, Minimum weight design of circular plates, J. Mech. Phys. Solids 4, 294-299(1956) MR 0080466
  • [4] D. C. Drucker and R. T. Shield, Design for minimum weight, Proc. 9th Intern. Congr. Appl. Mech., Brussels, 1956
  • [5] D. C. Drucker and R. T. Shield, Bounds on minimum weight design, Quart. Appl. Math. 15, 269-281 (1957) MR 0090269
  • [6] E. T. Onat, W. Shumann and R. T. Shield, Design of plates for minimum weight, ZAMP 8, 485-489 (1957)
  • [7] Z. Mróz, The load carrying capacity and minimum weight design of annular plates (in Polish) Rozpr. Inzyn. 4, 605-625 (1958)
  • [8] R. T. Shield, Plate design for minimum weight, Quart. Appl. Math. 28, 131-144 (1960) MR 0112409
  • [9] W. Prager and R. T. Shield, Minimum weight design of circular plates under arbitrary loading, ZAMP 10, 421-426 (1959) MR 0108938
  • [10] W. Freiberger, Minimum weight design of cylindrical shells, J. Appl. Mech. 23, 576-580 (1956) MR 0088919
  • [11] W. Freiberger, On the minimum weight design problem for cylindrical sandwich shells, J. Aeron. Sciences 24, 847-848 (1957) MR 0089615
  • [12] R. T. Shield, On the optimum design of shells, J. Appl. Mech. 27, 316-322 (1960) MR 0112410
  • [13] M. Mikeladze, Weight and strength analysis of orthotropic rigid-plastic shells, (in Russian), Arch. Mech. Appliquee 11, 1 (1959) MR 0102255
  • [14] W. Prager, An introduction to plasticity, Addison-Wesley Co., 1959 MR 0105910
  • [15] D. C. Drucker, W. Prager, H. T. Greenberg, Extended limit design theorems for continuous media, Quart. Appl. Math. 9, 381-389 (1952) MR 0045573

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.49

Retrieve articles in all journals with MSC: 73.49


Additional Information

DOI: https://doi.org/10.1090/qam/135327
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society