Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

The constitutive equations for rate sensitive plastic materials


Author: P. Perzyna
Journal: Quart. Appl. Math. 20 (1963), 321-332
MSC: Primary 73.35
DOI: https://doi.org/10.1090/qam/144536
MathSciNet review: 144536
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The principal aim of the present paper is to generalize the one-dimensional constitutive equations for rate-sensitive plastic materials to general states of stress. The dynamical yield conditions for elastic, visco-plastic materials are discussed and new relaxation functions are introduced. Solutions of the relaxation equations for such materials are given.


References [Enhancements On Off] (What's this?)

  • [1] S. R. Bodner and P. S. Symonds, Plastic deformation in impact and impulsive loading of beams, Plasticity: Proceedings of the Second Symposium on Naval Structural Mechanics, Pergamon, Oxford, 1960, pp. 488–500. MR 0118091
  • [2] J. D. Campbell, The yield of mild steel under impact loading, J. Mech. Phys. Solids 3, 54-62 (1954)
  • [3] J. D. Campbell and J. Duby, The yield behavior of mild steel in dynamic compression, Proc. Roy. Soc. 236A, 24-40 (1956)
  • [4] D. S. Clark and P. E. Duwez, The influence of strain rate on some tensile properties of steel, Proc. Amer. Soc. Testing Materials 50, 560-575 (1950)
  • [5] Alfred M. Freudenthal, Fatigue, Handbuch der Physik, herausgegeben von S. Flügge. Bd. 6. Elastizität und Plastizität, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958, pp. 591–613. MR 0094945
  • [6] K. Hohenemser and W. Prager, Über die Ansätze der Mechanik isotroper Kontinua, Zeitschrift f. angew. Math. u. Mech. 12, 216-226 (1932); see also W. Prager, Mécanique des solides isotropes au delà, du domaine élastique, Mémorial Sci. Math. 87, Paris, 1937, Eq. (47) on p. 27
  • [7] L. E. Malvern, The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect, J. Appl. Mech. 18 (1951), 203–208. MR 0041688
  • [8] P. Perzyna, The study of the dynamical behavior of rate sensitive plastic materials, to be published
  • [9] William Prager, Linearization in visco-plasticity, Österreich. Ing.-Arch. 15 (1961), 152–157. MR 0137397
  • [10] William Prager, Introduction to mechanics of continua, Introductions to Higher Mathematics. Ginn and Co., Boston, Mass.-Toronto-London, 1961. MR 0126974
  • [11] V. V. Sokolovskiĭ, The propagation of elastic-viscous-plastic waves in bars, Akad. Nauk SSSR. Prikl. Mat. Meh. 12 (1948), 261–280 (Russian). MR 0026902

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.35

Retrieve articles in all journals with MSC: 73.35


Additional Information

DOI: https://doi.org/10.1090/qam/144536
Article copyright: © Copyright 1963 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website