A theory of nonlinear networks. I
Authors:
R. K. Brayton and J. K. Moser
Journal:
Quart. Appl. Math. 22 (1964), 1-33
DOI:
https://doi.org/10.1090/qam/169746
MathSciNet review:
169746
Full-text PDF Free Access
Abstract | References | Additional Information
Abstract: This report describes a new approach to nonlinear RLC-networks which is based on the fact that the system of differential equations for such networks has the special form


- [1] W. Bode, Network analysis and feedback amplifier design, D. Van Nostrand Co., Inc., Princeton, N. J., 1945
- [2] E. A. Guillemin, Introductory circuit theory, J. Wiley and Sons, Inc., N. Y., 1958 MR 0137480
- [3] E. J. Cartan, Leçons sur les invariants integraux, A. Hermann et Fils, Paris, 1922
- [4] R. Duffin, Nonlinear networks III, Bull. Amer. Math. Soc. 54, (1948) 119 MR 0024497
- [5] E. Goto et al., Esaki diode high-speed logical circuits, IRE Trans. on Electronic Computers EC-9 (1960) 25
- [6] J. Moser, Bistable systems of differential equations, Proc. of the Rome Symposium, Provisional International Computation Centre, Birkhäuser Verlag, 1960, pp. 320-329 MR 0123065
- [7] J. Moser, Bistable systems with applications to tunnel diodes, IBM J. Res. Dev. 5 (1961) 226 MR 0128575
- [8] B. D. H. Tellegen, A general network theorem with applications, Phillips Research Reports 7 (1952) 259 MR 0051142
- [9] L. Esaki, New phenomenon in narrow Ge p-n junctions, Phys. Rev. 109 (1958) 603
- [10] W. Millar, Some general theorems for nonlinear systems possessing resistance, Phil. Mag. 42 (1951) 1150 MR 0044364
- [11] C. Cherry, Some general theorems for nonlinear systems possessing reactance, Phil. Mag. 42 (1951) 1161 MR 0044365
- [12] J. LaSalle and S. Lefschetz, Stability by Liapunov's direct method with applications, Academic Press, New York, London, 1961, p. 66 MR 0132876
- [13] N. G. Chetayev, Stability of motion, Moscow, 1946
Additional Information
DOI:
https://doi.org/10.1090/qam/169746
Article copyright:
© Copyright 1964
American Mathematical Society