Distributions involving norms of correlated Gaussian vectors

Author:
K. S. Miller

Journal:
Quart. Appl. Math. **22** (1964), 235-243

DOI:
https://doi.org/10.1090/qam/99953

MathSciNet review:
QAM99953

Full-text PDF

Abstract | References | Additional Information

Abstract: The norm of a Gaussian vector is called a Rayleigh random variable. We compute various first and higher order probability density functions of products and quotients of correlated Rayleigh variates. Moments of these distributions are also calculated. The main results are summarized in Section 2 below. Extensive use is made of formulas involving special functions. These identities enable us to obtain the desired results directly and efficiently.

**[1]**K. S. Miller, R. I. Bernstein, and L. E. Blumenson,*Rayleigh processes*, Quart. Appl. Math.**16**(1958), 137–145. MR**0094862**, https://doi.org/10.1090/S0033-569X-1958-94862-3**[2]**M. Nakagami,*The m-distribution--A general formula of intensity distribution of rapid fading. Statistical methods in radio wave propagation*, edited by W. C. Hoffman, Pergamon Press, 1960**[3]**F. A. J. Ford,*A note on the paper of Miller, Bernstein and Blumenson*, Quart. Appl. Math.**17**(1959/1960), 446. MR**0109370**, https://doi.org/10.1090/S0033-569X-1960-0109370-0**[4]**J. H. Park Jr.,*Moments of the generalized Rayleigh distribution*, Quart. Appl. Math.**19**(1961), 45–49. MR**0119222**, https://doi.org/10.1090/S0033-569X-1961-0119222-9**[5]**W. T. Wells, R. L. Anderson, and John W. Cell,*The distribution of the product of two central or noncentral chi-square variates*, Ann. Math. Statist.**33**(1962), 1016–1020. MR**0142170**, https://doi.org/10.1214/aoms/1177704469**[6]**L. E. Blumenson and K. S. Miller,*Properties of generalized Rayleigh distributions*, Ann. Math. Statist.**34**(1963), 903–910. MR**0150860**, https://doi.org/10.1214/aoms/1177704013**[7]**S. Bose,*On the distribution of the ratio of variances of two samples drawn from a given normal bivariate correlated population*, Sankhya**2**, 65-72 (1935)**[8]**P. R. Krishnaiah, Peter Hagis Jr., and Leon Steinberg,*A note on the bivariate chi distribution*, SIAM Rev.**5**(1963), 140–144. MR**0153069**, https://doi.org/10.1137/1005034**[9]**P. C. Mahalanobis, R. C. Bose and S. N. Roy,*Normalisation of statistical variates and the use of rectangular co-ordinates in the theory of sampling distributions*, Sankhyā**3**, 1-40 (1937)**[10]**K. S. Miller, Review of [4], Math. Revs.**22**, 1708-1709 (1961)**[11]**G. N. Watson,*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110****[12]**Wilhelm Magnus and Fritz Oberhettinger,*Formulas and Theorems for the Special Functions of Mathematical Physics*, Chelsea Publishing Company, New York, N.Y., 1949. Translated by John Wermer. MR**0029000****[13]**A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,*Tables of integral transforms. Vol. I*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR**0061695****[14]**S. O. Rice,*Mathematical analysis of random noise*, Bell System Tech. J.**24**(1945), 46–156. MR**0011918**, https://doi.org/10.1002/j.1538-7305.1945.tb00453.x

Additional Information

DOI:
https://doi.org/10.1090/qam/99953

Article copyright:
© Copyright 1964
American Mathematical Society