Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Distributions involving norms of correlated Gaussian vectors


Author: K. S. Miller
Journal: Quart. Appl. Math. 22 (1964), 235-243
DOI: https://doi.org/10.1090/qam/99953
MathSciNet review: QAM99953
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: The norm of a Gaussian vector is called a Rayleigh random variable. We compute various first and higher order probability density functions of products and quotients of correlated Rayleigh variates. Moments of these distributions are also calculated. The main results are summarized in Section 2 below. Extensive use is made of formulas involving special functions. These identities enable us to obtain the desired results directly and efficiently.


References [Enhancements On Off] (What's this?)

  • [1] K. S. Miller, R. I. Bernstein and L. E. Blumenson, Generalized Rayleigh processes, Quart. Appl. Math. 16, 137-145 (1958) MR 0094862
  • [2] M. Nakagami, The m-distribution--A general formula of intensity distribution of rapid fading. Statistical methods in radio wave propagation, edited by W. C. Hoffman, Pergamon Press, 1960
  • [3] F. A. J. Ford, A note on the paper of Miller, Bernstein and Blumenson, Quart. Appl. Math. 17, 446 (1960) MR 0109370
  • [4] J. H. Park, Moments of the generalized Rayleigh distribution, Quart. Appl. Math. 19, 45-49 (1961) MR 0119222
  • [5] T. W. Wells, R. L. Anderson and J. W. Cell, The distribution of the product of two central or non-central chi-square variates, Ann. Math. Statist. 33, 1016-1020 (1962) MR 0142170
  • [6] L. E. Blumenson and K. S. Miller, Properties of generalized Rayleigh distributions, Ann. Math. Statist. 34, 903-910 (1963) MR 0150860
  • [7] S. Bose, On the distribution of the ratio of variances of two samples drawn from a given normal bivariate correlated population, Sankhya 2, 65-72 (1935)
  • [8] P. R. Krishnaiah, P. Hagis and L. Steinberg, A note on the bivariate chi distribution, SIAM Review 5, 140-144 (1963) MR 0153069
  • [9] P. C. Mahalanobis, R. C. Bose and S. N. Roy, Normalisation of statistical variates and the use of rectangular co-ordinates in the theory of sampling distributions, Sankhyā3, 1-40 (1937)
  • [10] K. S. Miller, Review of [4], Math. Revs. 22, 1708-1709 (1961)
  • [11] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, 2nd ed., 1952 MR 1349110
  • [12] W. Magnus and F. Oberhettinger, Formulas and theorems for the special functions of mathematical physics, Chelsea Publishing Co., 1949 MR 0029000
  • [13] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, Vol. I, McGraw-Hill Book Co., Inc., 1954 MR 0061695
  • [14] S. O. Rice, Mathematical analysis of random noise, Bell System Tech. J. 24, 46-156 (1945) MR 0011918


Additional Information

DOI: https://doi.org/10.1090/qam/99953
Article copyright: © Copyright 1964 American Mathematical Society

American Mathematical Society