The semi-infinite elastic strip

Authors:
M. W. Johnson Jr. and R. W. Little

Journal:
Quart. Appl. Math. **22** (1965), 335-344

MSC:
Primary 73.35

DOI:
https://doi.org/10.1090/qam/187479

MathSciNet review:
187479

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**M. W. Johnson, Jr.,*The elastic strip under end loading*, Summary report, U. S. Army Mathematics Research Center, University of Wisconsin, Madison, to appear**[2]**E. L. Reiss,*A theory for the small rotationally symmetric deformations of cylindrical shells*, Comm. Pure Appl. Math.**13**, 531-550 (1960) MR**0135305****[3]**E. L. Reiss,*On the theory of cylindrical shells*, Quart. J. Mech. Appl. Math.**15**, 325-338 (1962) MR**0141277****[4]**K. O. Friedrichs and R. F. Dressler,*A boundary-layer theory for elastic plates*, Comm. Pure Appl. Math.**14**, 1-33 (1961) MR**0122117****[5]**R. C. T. Smith,*The bending of a semi-infinite strip*, Australian J. Sci. Res.**5**, 227-237 (1952) MR**0061543****[6]**G. Horvay,*Biharmonic eigenvalue problem of the semi-infinite strip*, Quart. Appl. Math.**15**, 65-81 (1957) MR**0085734****[7]**G. Horvay and J. S. Born,*Some mixed boundary-value problems of the semi-infinite strip*, J. Appl. Mech.**24**, 261-268 (1957). MR**0087321****[8]**R. W. Little, Ph.D. dissertation, University of Wisconsin, 1962.**[9]**E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955 MR**0069338****[10]**A. P. Hillman and H. E. Salzer,*Roots of sin z = z*, Phil. Mag.**34**, 575 (1943) MR**0008710****[11]**C. I. Robbins and R. C. T. Smith,*A table of roots of sin z = --z*, Phil. Mag.**39**, 1004-1005 (1948) MR**0028667****[12]**J. P. Benthem,*A Laplace transform method for the solution of semi-infinite and finite strip problems in stress analysis*, Quart. J. Mech. Appl. Math.**16**, 413-429 (1963) MR**0162410**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73.35

Retrieve articles in all journals with MSC: 73.35

Additional Information

DOI:
https://doi.org/10.1090/qam/187479

Article copyright:
© Copyright 1965
American Mathematical Society