Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Necessary conditions for subharmonic and superharmonic synchronization in weakly nonlinear systems

Authors: Richard E. Kronauer and Samuel A. Musa
Journal: Quart. Appl. Math. 24 (1966), 153-160
MSC: Primary 34.45
DOI: https://doi.org/10.1090/qam/203183
MathSciNet review: 203183
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Stig Lundquist, Subharmonic oscillations in a nonlinear system with positive damping, Quart. Appl. Math. 13 (1955), 305–310. MR 0073027, https://doi.org/10.1090/S0033-569X-1955-73027-3
  • [2] M. L. Cartwright, Forced oscillations in nonlinear systems, Contributions to the Theory of Nonlinear Oscillations, Annals of Mathematics Studies, no. 20, Princeton University Press, Princeton, N. J., 1950, pp. 149–241. MR 0035355
  • [3] K. Göransson and L. Hansson, An experimental investigation of subharmonic oscillations in a nonlinear system, Kungl. Tekn. Högsk. Handl. Stockholm 1956 (1956), no. 97, 16. MR 0082595
  • [4] H. Poincaré, Les Méthodes nouvelles de la Mécanique Céleste, 1, Gauthier-Villars, Paris (1892) reprint, Dover Publications, Inc., New York (1957)
  • [5] B. Van der Pol, Forced Oscillations in a Circuit with Nonlinear Resistance (Reception with Reactive Triode), Phil. Mag. and J. Sei., 3, (1927) 65-80; reprint, Selected Papers on Mathematical Trends in Control Theory, Dover Publications, Inc., New York, (1964) 124-140
  • [6] N. Krylov and N. Bogoliubov, Introduction to Nonlinear Mechanics, Ann. Math. Studies (1947) No. 11, Princeton Univ. Press, Princeton
  • [7] N. Bogoliubov and Y. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations (1955) translated by Gordon and Breach, Science Publishers, New York, (1961)
  • [8] J. D. Cole and J. Kevorkian, Uniformly valid asymptotic approximations for certain non-linear differential equations, Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, pp. 113–120. MR 0147701
  • [9] S. A. Musa, Synchronized Oscillations in Driven Nonlinear Systems, Ph. D. Dissertation, Harvard University, Cambridge, Mass. (1965)
  • [10] Robert A. Gambill and Jack K. Hale, Subharmonic and ultraharmonic solutions for weakly non-linear systems, J. Rational Mech. Anal. 5 (1956), 353–394. MR 0077741

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34.45

Retrieve articles in all journals with MSC: 34.45

Additional Information

DOI: https://doi.org/10.1090/qam/203183
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society