Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

An extension of the method of averaging


Author: P. R. Sethna
Journal: Quart. Appl. Math. 25 (1967), 205-211
MSC: Primary 34.45
DOI: https://doi.org/10.1090/qam/217384
MathSciNet review: 217384
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. M. Bogoliuboff and Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach, New York, 1962, Chaps. 5 and 6
  • [2] Jack K. Hale, Oscillations in nonlinear systems, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963. MR 0150402
  • [3] Yu. A. Mitropolsky, Problems of the asymptotic theory of nonstationary vibrations, Daniel Davey, New York, 1965
  • [4] V. M. Volosov, The method of averaging, Soviet Math. Dokl. 2 (1961), 221–224. MR 0118924
  • [5] N. M. Bogoliuboff and Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach, New York, 1962, p. 497
  • [6] N. M. Bogoliuboff and Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach, New York, 1962, p. 404
  • [7] Jack K. Hale, Oscillations in nonlinear systems, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963. MR 0150402
  • [8] Jack K. Hale, Oscillations in nonlinear systems, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963. MR 0150402
  • [9] L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoretical Physics, Vol. 1. Translated from the Russian by J. B. Bell, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. MR 0120782
  • [10] J. L. Bogdanoff, Influence on the behavior of a linear dynamical system of some imposed rapid motions of small amplitude, J. Acoust. Soc. Amer. 34, 1055-1062 (1962)
  • [11] E. R. Lowenstern, The stabilizing effect of imposed oscillations of high frequency on a dynamical system, Philos. Mag. 13, 458 (1932)
  • [12] P. R. Sethna and G. W. Hemp, Nonlinear oscillations of a gyroscopic pendulum with an oscillating point of suspension, Proc. Colloq. Internat. du Centre National de la Recherche Scientifique N- 148, Les vibrations forcées dans les systémes non-lineaires, 1964, pp. 375-392

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34.45

Retrieve articles in all journals with MSC: 34.45


Additional Information

DOI: https://doi.org/10.1090/qam/217384
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society