Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

The neuron as a Lie group germ and a Lie product


Author: William C. Hoffman
Journal: Quart. Appl. Math. 25 (1968), 423-440
DOI: https://doi.org/10.1090/qam/99871
MathSciNet review: QAM99871
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A basic Lie group derived earlier that describes the ``constancies'' of visual perception is extended to one more dimension to take into account the nonlinear flow of an afferent volley of nerve impulses through the layers of the visual cortex. One is then led, via the usual determination of the solutions of a Lagrange partial differential equation in terms of an associated Pfaffian system of ordinary differential equations, to a correspondence between neuron cell body, Lie group germ, and critical point of the system of ordinary differential equations governing the orbits. The local phase portraits of the latter bear a marked resemblance to one or the other of the neuron types defined by Sholl. Since ``brains are as different as faces", the concept of structural stability plays an important role in analyzing the connectivity of the neural network. Finally, Lukasiewicz's theory of parentheses is used to obtain a graph-theoretic representation of the Jacobi identity, which then serves to explain the branching of neuronal processes (dendrites).


References [Enhancements On Off] (What's this?)

  • [1] Y. Akishige, Theoretical considerations on the problems of perceptual constancies, Kyushu Psychol. Studies No. II, 1-57 (1961)
  • [2] Y. Akishige, Perceptual constancy and the law of conservation of perceptual information, Kyushu Psychol. Studies No. III, 1-48 (1965)
  • [3] Claude Berge, The theory of graphs and its applications, Translated by Alison Doig, Methuen & Co. Ltd., London; John Wiley & Sons Inc., New York, 1962. MR 0132541
  • [4] G. H. Bishop, and J. L. O'Leary. Potential records from the optic cortex of the cat, J. Neurophysiol. 1, 391-404 (1938)
  • [5] G. H. Bishop, Natural history of the nerve impulse, Physiol. Rev. 36, 376-399 (1956)
  • [6] T. H. Bullock, Neuron doctrine and electrophysiology, Science 129, 997-1002 (1959)
  • [7] E. Cassirer, The concept of group and the theory of perception, Philos. and Phenomenological Res. 5, 1-36 (1944)
  • [8] H. T. Chang, Changes in excitability of cerebral cortex following single electrical shock applied to cortical surface, J. Neurophysiol. 14, 95-111 (1951)
  • [9] P. M. Cohn, Lie groups, Cambridge Tracts in Mathematics and Mathematical Physics, no. 46, Cambridge University Press, New York, N.Y., 1957. MR 0103940
  • [10] M. Colonnier, The tangential organization of the visual cortex, J. Anatomy (London) 98, 327-344 (1964)
  • [11] J. L. Conel, The postnatal development of the human cerebral cortex. I; Cortex of the newborn. II; Cortex of the one-month infant. III; Cortex of the three-month infant. IV; Cortex of the six-month infant. V; Cortex of the fifteen-month infant. VI; Cortex of the 24-month infant. VII; Cortex of the four year old child, Harvard University Press, 1939, 1941, 1941, 1955, 1955, 1959, 1959
  • [12] J. T. Culbertson, A neural analysis of behavior and consciousness, Wm. C. Brown Co., Dubuque, Iowa, 1950
  • [13] James T. Culbertson, Some uneconomical robots, Automata studies, Annals of mathematics studies, no. 34, Princeton University Press, Princeton, N. J., 1956, pp. 99–116. MR 0078060
  • [14] H. F. DeBaggis, Dynamical systems with stable structures, Contributions to the Theory of Nonlinear Oscillations, vol. II, Princeton University Press, Princeton, 1952, pp. 37–59. MR 0051991
  • [15] J. F. Fulton, Physiology of the nervous system, 3rd ed., Oxford Univ. Press, New York, 1949
  • [16] M. Gihr, Methode zur Rekonstruktion von Nervenzellen, J. f. Hirnforschung 5, 7-22 (1962)
  • [17] Heinrich W. Guggenheimer, Differential geometry, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0156266
  • [18] William C. Hoffman, The Lie algebra of visual perception, J. Mathematical Psychology 3 (1966), 65-98; errata, ibid. 4 (1966), 348–349. MR 0235859
  • [19] W. C. Hoffman, Comments on 'optical art', Applied Optics 5, 873-874 (1966)
  • [20] M. Kucharzewski and M. Kuczma, Basic concepts of the theory of geometric objects, Rozprawy Mat. 43 (1964), 73. MR 0171236
  • [21] Ivan Kupka, The singularities of integrable structurally stable Pfaffian forms, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1431–1432. MR 0173214
  • [22] C-L. Li, C. Cullen, and H. H. Jasper, Laminar microelectrode studies of specific somatosensory cortical potentials, J. Neurophysiol. 19, 111-130 (1956)
  • [23] Pinchas Mendelson, On phase portraits of critical points in 𝑛-space, contributions to the theory of nonlinear oscillations, Vol. IV, Annals of Mathematics Studies, no. 41, Princeton University Press, Princeton, N.J., 1958, pp. 167–199. MR 0104868
  • [24] K. Motokawa, Mechanisms for the transfer of information along the visual pathways, in Internat. Rev. Neurobiol. 5, C. C. Pfeiffer and J. R. Smythies, Eds., Academic Press, N. Y., 1963, pp. 121-181.
  • [25] James R. Munkres, Elementary differential topology, Lectures given at Massachusetts Institute of Technology, Fall, vol. 1961, Princeton University Press, Princeton, N.J., 1963. MR 0163320
  • [26] Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957), iii+123. MR 0121424
  • [27] Richard S. Palais, The classification of 𝐺-spaces, Mem. Amer. Math. Soc. No. 36, 1960. MR 0177401
  • [28] W. Pitts, and W. S. McCulloch. How we know universals. The perception of auditory and visual forms, Bull. Math. Biophys. 9, 127-147 (1947)
  • [29] K. H. Pribram, A review of theory in physiological psychology, in Annual Revs. Psychol., Vol. 11, Palo Alto, Calif., 1960, pp. 1-40
  • [30] K. H. Pribram, The new neurology: memory, novelty, thought and choice, in EEG and behavior, G. H. Glaser, Ed., Basic Books, N. Y., 1963, pp. 149-173
  • [31] D. P. Purpura, Morphological basis of elementary evoked response patterns in the neocortex of the newborn cat, Annals N. Y. Acad. Sci., Vol. 92, Art. 3 (1961), pp. 840-859
  • [32] S. Ramon y Cajal, Histologie du systeme nerveux de l'homme et des vertebres, Vol. II, Madrid, 1955
  • [33] S. Ramon y Cajal, Studies on vertebrate neurogenesis, Thomas, Springfield, Ill., 1960
  • [34] N. Rashevsky, Mathematical biophysics: Physico-mathematical foundations of biology., 3rd revised ed. 2 vols, Dover Publications, Inc., New York, 1960. MR 0118542
  • [35] L. È. Reĭzin′, Behavior of the integral curves of a system of differential equations near a singular point in a space of more than one dimension, Amer. Math. Soc. Transl. (2) 18 (1961), 173–186. MR 0124573
  • [36] F. Rosenblatt, Perceptual generalization over transformation groups, in Self-Organizing Systems, M. Yovits and S. Cameron, Eds., Pergamon Press, 1960
  • [37] D. A. Sholl, The organization of the cerebral cortex, Wiley & Sons, Inc., New York, 1956
  • [38] J. R. Smythies, The stroboscopic patterns. II. The phenomenology of the bright phase and after-images, British J. Psychol. 50, 305-324 (1959)
  • [39] M. Verzeano, and K. Negishi, Neuronal activity in cortical and thalamic networks, J. General Physiol. 43, Suppl., 177-195 (1960)
  • [40] Norbert Wiener, Cybernetics, or control and communication in the animal and the machine, 2nd ed. The M.I.T. Press, Cambridge, Mass.; John Wiley & Sons, Inc., New York-London, 1961. MR 0127995
  • [41] J. Z. Young, Two memory stores in one brain, Endeavour 24, 13-20 (1965)


Additional Information

DOI: https://doi.org/10.1090/qam/99871
Article copyright: © Copyright 1968 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website