Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Exact solution of the equations for shallow shells of revolution


Author: Thomas J. Lardner
Journal: Quart. Appl. Math. 26 (1968), 445-450
DOI: https://doi.org/10.1090/qam/99842
MathSciNet review: QAM99842
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. Reissner, On some problems in a shell theory, Structural mechanics, Pergamon Press, New York, 1960, pp. 74–114. MR 0129205
  • [2] Eric Reissner, On the determination of stresses and displacements for unsymmetrical deformations of shallow spherical shells, J. Math. and Phys. 38 (1959/1960), 16–35. MR 0105223, https://doi.org/10.1002/sapm195938116
  • [3] V. Z. Vlasov, General theory of shells and its applications in engineering. English translation NASA TT f-99 April 1964 of Russian edition 1949
  • [4] Malcolm Douglas McIlroy, SOLUTION OF THE DIFFERENTIAL EQUATIONS OF CONICAL SHELLS, ProQuest LLC, Ann Arbor, MI, 1959. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2939085
  • [5] M. D. McIlroy, Linear deformations of conical shells, J. Aero/Space Sci. 26 (1959), 253–254. MR 0102956
  • [6] Thomas J. Lardner, On the strss distribution in a shallow logarithmic shell of revolution, J. Math. and Phys. 45 (1966), 23–34. MR 0191176
  • [7] C. C. Meijer, On the G-function, Nederl. Akad. Wetensh., Proc. 49, 227-237, 344-456, 457-469, 632-641, 765-772, 936-943, 1063-1072, 1165-1175 (1946)
  • [8] A. Erdelyi et al., Higher transcendental functions 1, McGraw-Hill, New York, 1953
  • [9] Eric Reissner, On asymptotic solutions for nonsymmetric deformations of shallow shells of revolution, Internat. J. Engrg. Sci. 2 (1964), 27–43 (English, with French, German, Italian and Russian summaries). MR 0172522, https://doi.org/10.1016/0020-7225(64)90009-6
  • [10] H. D. Conway and K. A. Farnham, Anticlastic curvature of strips of variable thickness, Int. J. Mech. Sci. 7, 451-458 (1965)


Additional Information

DOI: https://doi.org/10.1090/qam/99842
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society