Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Stress distributions in elastic and viscoelastic plates subjected to symmetrical rigid indentations


Author: Y. M. Tsai
Journal: Quart. Appl. Math. 27 (1969), 371-380
DOI: https://doi.org/10.1090/qam/99818
MathSciNet review: QAM99818
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Y. M. Tsai and H. Kolsky, A theoretical and experimental investigation of the flaw distribution on glass surfaces, J. Mech. Phys. Solids 15, 29-46 (1967)
  • [2] H. Hertz, Collected works, vol. 1, Leipzig Barth, 1882, p. 174
  • [3] M. T. Huber, Zur Theorie der Berührung fester elastischer Körper, Ann. Physik 14, 153-163 (1904)
  • [4] Y. M. Tsai and H. Kolsky, A study of the fractures produced in glass blocks by impact, J. Mech. Phys. Solids 15, 263-278 (1967)
  • [5] A. E. Green and W. Zerna, Theoretical elasticity, Oxford, at the Clarendon Press, 1954. MR 0064598
  • [6] H. Lamb, On Boussinesq's problem, Proc. London Math. Soc. 34, 276-284 (1902)
  • [7] T. C. T. Ting, The contact stresses between a rigid indenter and a viscoelastic half-space, J. Appl. Mech. Trans. ASME E33 4, 845-854 (1966)
  • [8] E. H. Lee and J. R. M. Radok, The contact problem for viscoelastic bodies, J. Appl. Mech. 27 (1960), 438–444. MR 0116633
  • [9] S. C. Hunter, The Hertz problem for a rigid spherical indenter and a viscoelastic half-space, J. Mech. Phys. Solids 8 (1960), 219–234. MR 0165779, https://doi.org/10.1016/0022-5096(60)90028-4


Additional Information

DOI: https://doi.org/10.1090/qam/99818
Article copyright: © Copyright 1969 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website