Expanding axial wave on a submerged cylindrical shell

Authors:
Tsun C. Fang and Jerome M. Klosner

Journal:
Quart. Appl. Math. **28** (1970), 355-376

DOI:
https://doi.org/10.1090/qam/99786

MathSciNet review:
QAM99786

Full-text PDF

Abstract | References | Additional Information

Abstract: A double transform method is used to determine the response of a submerged, infinitely long, circular cylindrical shell to a plane acoustic wave which acts initially at an isolated cross section, and then proceeds to propagate along the axis of the cylinder, symmetrically with respect to that cross section.

**[1]**R. D. Mindlin and H. H. Bleich,*Response of an elastic cylindrical shell to a transverse, step shock wave*, J. Appl. Mech.**20**(1953), 189–195. MR**0059166****[2]**M. L. Baron,*The response of a cylindrical shell to a transverse shock wave*, Proc. Second U.S. National Congress of Applied Mechanics, 1954, pp. 201-212**[3]**J. H. Haywood,*Response of an elastic cylindrical shell to a pressure pulse*, Quart. J. Mech. Appl. Math.**11**(1958), 129–141. MR**0107416**, https://doi.org/10.1093/qjmam/11.2.129**[4]**H. Herman and J. M. Klosner,*Transient response of a periodically supported cylindrical shell immersed in a fluid medium*, J. Appl. Mech. Ser. E**32**, 562-568 (1965)**[5]**J. W. Berglund and J. M. Klosner,*Interaction of a ring-reinforced shell and a fluid medium*, J. Appl. Mech. Ser. E**35**, 139-147 (1968)**[6]**G. F. Carrier,*The response of a submerged cylindrical shell to an axially propagating acoustic wave*, Contract N7 ONr-35810, no. B 11-19/7, Brown University, Providence, R.I., 1953**[7]**F. Herrmann and J. E. Russell,*Forced motions of shells and plates surrounded by an acoustic fluid*, Proc. Sympos. Theory of Shells in Honor of Lloyd Hamilton Donnell, University of Houston, Houston, Texas, 1967, pp. 311-339**[8]**A. Erdélyi,*A symptotic expansions*, Dover, New York, 1956**[9]**George F. Carrier, Max Krook, and Carl E. Pearson,*Functions of a complex variable: Theory and technique*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222256****[10]**Harold Jeffreys and Bertha Swirles Jeffreys,*Methods of Mathematical Physics*, Cambridge, at the University Press, 1950. 2d ed. MR**0035791****[11]**Manuel V. Cerrillo,*On the evaluation of integrals of the type 𝑓(𝜏₁,𝜏₂,\cdots,𝜏_{𝑛})=(1/2𝜋𝑖)∫𝐹(𝑠)𝑒^{𝑊(𝑠,𝜏₁,𝜏₂,\cdots𝜏_{𝑛})}𝑑𝑠 and the mechanism of formation of transient phenomena. 2a. Elementary introduction to the theory of the saddle-point method of integration*, Tech. Rep. No. 55: 2a, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass., 1950. MR**0065610****[12]**T. C. Fang and J. M. Klosner,*Expanding axial wave on a submerged cylindrical shell*, Polytechnic Institute of Brooklyn, PIBAL Report no. 69-2, January 1969**[13]**P. M. Morse and H. Feshbach,*Methods of theoretical physics*, McGraw-Hill, New York, 1961**[14]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[15]**Robert Folk, George Fox, C. A. Shook, and C. W. Curtis,*Elastic strain produced by sudden application of pressure to one end of a cylindrical bar. I. Theory*, J. Acoust. Soc. Amer.**30**(1958), 552–558. MR**0093189**, https://doi.org/10.1121/1.1909682

Additional Information

DOI:
https://doi.org/10.1090/qam/99786

Article copyright:
© Copyright 1970
American Mathematical Society