Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The influence of dynamical thermal expansion on the propagation of plane elastic-plastic stress waves


Author: B. Raniecki
Journal: Quart. Appl. Math. 29 (1971), 277-290
DOI: https://doi.org/10.1090/qam/99760
MathSciNet review: QAM99760
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: In this paper the implications of the classical heat conduction equation for the problem of the propagation of plane waves caused by mechanical impulse and sudden heating at the boundary of an elastic-plastic half-space are presented. It is shown that the effect of dynamical thermal expansion is to reduce the jump in the stress at waves of strong discontinuity. The stress and temperature fields dealt with here are assumed to be thermodynamically uncoupled.


References [Enhancements On Off] (What's this?)

  • [1] H. A. Rahmatulin and Ju. A. Dem'janov, Strength of materials under intensive momentary loads, Fizmatgiz, Moscow, 1961 (Russian) MR 0135322
  • [2] N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1968
  • [3] H. G. Hopkins, Engineering plasticity, Conference (Cambridge, 1968) Cambridge Univ. Press, New York, 1968, pp. 277-315 MR 0293888
  • [4] W. K. Nowacki, Thermal shock on the boundary of an elastic-visco-plastic semi-infinite body. I, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 13, 75-84 (1965)
  • [5] W. K. Nowacki, Thermal shock on the boundary of an elastic-visco-plastic semi-infinite body. II. Bull. Acad. Polon. Sci., Sér. Sci. Tech. 13, 361-367 (1965)
  • [6] B. Raniecki, Thermal shock on the boundary of an elastic-plastic semi-infinite body, Proc. Vibration Problems 5, 319-347 (1964) MR 0174227
  • [7] P. Suvorov, The propagation of thermal stresses in an elastic-plastic bar, Prikl. Mat. Meh. 27, (1963) = J. Appl. Math. Mech. 27, 577-587 (1963)
  • [8] P. Suvorov, On the propagation of elastic-plastic waves during heating of semi-infinite bar, Prikl. Mat. Meh. 28, 91-98 (1964) = J. Appl. Math. Mech. 28, 103-112 (1964) MR 0174232
  • [9] A. D. Fine and H. Kraus, On the wave propagation in thermoplastic media, J. Appl. Mech. 33, 514-520 (1966)
  • [10] W. Prager, Non-isothermal plastic deformation, Technical Report #4 NONR 5-562(20), Division of Engineering, Brown University Providence, R. I., 1957 MR 0091045
  • [11] B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley New York, 1960 MR 0112414
  • [12] W. K. Nowacki and B. Raniecki, Note on the propagation of thermoelastic (non-coupled) waves, Proc. Vibration Problems 8, 129-143 (1967)


Additional Information

DOI: https://doi.org/10.1090/qam/99760
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society