Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

The influence of dynamical thermal expansion on the propagation of plane elastic-plastic stress waves


Author: B. Raniecki
Journal: Quart. Appl. Math. 29 (1971), 277-290
DOI: https://doi.org/10.1090/qam/99760
MathSciNet review: QAM99760
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: In this paper the implications of the classical heat conduction equation for the problem of the propagation of plane waves caused by mechanical impulse and sudden heating at the boundary of an elastic-plastic half-space are presented. It is shown that the effect of dynamical thermal expansion is to reduce the jump in the stress at waves of strong discontinuity. The stress and temperature fields dealt with here are assumed to be thermodynamically uncoupled.


References [Enhancements On Off] (What's this?)

  • [1] Kh. A. Rakhmatulin and Yu. A. Dem′yanov, \cyr Prochnost′ pri intensivnykh kratkovremennykh nagruzkakh., Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0135322
  • [2] N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1968
  • [3] H. G. Hopkins, The method of characteristics and its application to the theory of stress waves in solids, Engineering plasticity (Conf., Cambridge, 1968) Cambridge Univ. Press, London, 1968, pp. 277–315. MR 0293888
  • [4] W. K. Nowacki, Thermal shock on the boundary of an elastic-visco-plastic semi-infinite body. I, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 13, 75-84 (1965)
  • [5] W. K. Nowacki, Thermal shock on the boundary of an elastic-visco-plastic semi-infinite body. II. Bull. Acad. Polon. Sci., Sér. Sci. Tech. 13, 361-367 (1965)
  • [6] B. Raniecki, Thermal shock on the boundary of an elastic-plastic semi-infinite body, Proc. Vibration Problems 5 (1964), 319–347 (English, with Polish and Russian summaries). MR 0174227
  • [7] P. Suvorov, The propagation of thermal stresses in an elastic-plastic bar, Prikl. Mat. Meh. 27, (1963) = J. Appl. Math. Mech. 27, 577-587 (1963)
  • [8] Iu. P. Suvorov, On the propagation of elastic-plastic waves during heating of a semi-infinite bar, J. Appl. Math. Mech. 28 (1964), 103–112. MR 0174232, https://doi.org/10.1016/0021-8928(64)90135-2
  • [9] A. D. Fine and H. Kraus, On the wave propagation in thermoplastic media, J. Appl. Mech. 33, 514-520 (1966)
  • [10] W. Prager, Non-isothermal plastic deformation, Tech. Rep. No. 4, Nonr 5-562(20), Division of Engineering, Brown University, Providence, R. I., 1957. MR 0091045
  • [11] Bruno A. Boley and Jerome H. Weiner, Theory of thermal stresses, John Wiley & Sons, Inc., New York London, 1960. MR 0112414
  • [12] W. K. Nowacki and B. Raniecki, Note on the propagation of thermoelastic (non-coupled) waves, Proc. Vibration Problems 8, 129-143 (1967)


Additional Information

DOI: https://doi.org/10.1090/qam/99760
Article copyright: © Copyright 1971 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website