Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

"Escape'' from a potential well (part I)


Authors: R. Subramanian and R. E. Kronauer
Journal: Quart. Appl. Math. 29 (1972), 459-491
DOI: https://doi.org/10.1090/qam/99751
MathSciNet review: QAM99751
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] B. Budiansky, Dynamic buckling of elastic structures: criteria and estimates; in Dynamic stability of structures, Proc. Internat. Conference Northwestern University, Evanston, Illinois, 1965
  • [2] G. Contopoulos, A third integral of motion in a galaxy, Z. Astrophys. 49, 273-291 (1960) MR 0114635
  • [3] M. Hénon and C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astronom. J. 69, 73-79 (1964) MR 0158746
  • [4] G. Contopoulos and J. D. Hadjidemetriou, Characteristics of invariant curves of plane orbits, Astronom. J. 73, 86-96 (1968)
  • [5] G. Contopoulos, Orbits in highly perturbed dynamical systems. I. Periodic orbits, Astronom. J. 75, 96-107 (1970) MR 0262606
  • [6] H. Poincaré, Les méthodes nouvelles de la méchanique céleste, Tomes 1, 2, 3, Paris, 1892, 1893, 1899; reprint, Dover, New York, 1957; English transl., NASA TTF-450, 451, 452, National Aeronautics and Space Administration, Washington, D. C., 1967
  • [7] C. Hayashi, Nonlinear oscillations in physical systems, McGraw-Hill, New York, 1964 MR 0170071
  • [8] N. N. Bogoljubov and Ju. A. Mitropol'skii, Asymptotic methods in the theory of non-linear oscillations, Fizmatgiz, 1958; English transl., Hindustan, Delhi; Gordon and Breach, New York, 1962 MR 0158130
  • [9] R. E. Kronauer and S. A. Musa, Exchange of energy between oscillations in weakly nonlinear conservative systems, J. Appl. Mech. 33, 451-452 (1966)
  • [10] R. Subramanian, Escape from a potential well, Ph.D. Dissertation, Harvard University, Cambridge, Mass., 1970
  • [11] A. O. Gilchrist, The free oscillations of conservative quasi-linear systems with two degrees of freedom, Internat. J. Mech. Sci. 3, 286-311 (1961)


Additional Information

DOI: https://doi.org/10.1090/qam/99751
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society