A table of solutions of the one-dimensional Burgers equation

Authors:
Edward R. Benton and George W. Platzman

Journal:
Quart. Appl. Math. **30** (1972), 195-212

MSC:
Primary 35Q99

DOI:
https://doi.org/10.1090/qam/306736

MathSciNet review:
306736

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The literature relating to the one-dimensional Burgers equation is surveyed. About thirty-five distinct solutions of this equation are classified in tabular form. The physically interesting cases are illustrated by means of isochronal graphs.

**[1]**W. F. Ames,*Nonlinear partial differential equations in engineering*, Academic Press, New York, 1965 MR**0210342****[2]**E. D. Banta,*Lossless propagation of one-dimensional finite amplitude sound waves*, J. Math. Anal. Appl.**10**, 166-173 (1965) MR**0170575****[3]**J. Bass,*Les fonctions pseudo-aléatoires*, C. R. Acad. Sci. Paris**C1-III**, 1-69 (1962) MR**0147847****[4]**H. Bateman,*Some recent researches on the motion of fluids*, Mon. Weather Rev.**43**, 163-170 (1915)**[5]**R. Bellman, S. P. Azen, and J. M. Richardson,*On new and direct computational approaches to some mathematical models of turbulence*, Quart. Appl. Math.**23**, 55-67 (1965) MR**0178672****[6]**E. R. Benton,*Some new exact, viscous, nonsteady solutions of Burgers' equation*, Phys. Fluids**9**, 1247-48 (1966)**[7]**-,*Solutions illustrating the decay of dissipation layers in Burgers' nonlinear diffusion equation*, Phys. Fluids**10**, 2113-19 (1967)**[8]**D. T. Blackstock,*Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves*, J. Acoust. Soc. Amer.**36**, 534-542 (1964)**[9]**-,*Connection between the Fay and Fubini solutions for plane sounds waves of finite amplitude*, J. Acoust. Soc. Amer.**39**, 1019-1026 (1966) MR**0198801****[10]**J. M. Burgers,*Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion*, Trans. Roy. Neth. Acad. Sci. Amsterdam,**17**, 1-53 (1939)**[11]**-,*Application of a model system to illustrate some points of the statistical theory of free turbulence*, Proc. Roy. Neth. Acad. Sci. Amsterdam**43**, 2-12 (1940) MR**0001147****[12]**-,*A mathematical model illustrating the theory of turbulence*, in*Advances in applied mechanics*(R. von Mises and T. von Kármán, editors)**1**, Academic Press, New York, 1948, pp. 171-199 MR**0027195****[13]**-,*The formation of vortex sheets in a simplified type of turbulent motion*, Proc. Roy. Neth. Acad. Sci. Amsterdam**53**, 122-133 (1950) MR**0034671****[14]**-,*Correlation problems in a one-dimensional model of turbulence*, Proc. Roy. Neth. Acad. Sci. Amsterdam**53**, 247-260, 393-406, 718-742 (1950) MR**0035581****[15]**-,*Statistical problems connected with the solution of a simple non-linear partial differential equation*, Proc. Roy. Neth. Acad. Sci. Amsterdam**B57**, 45-72, 159-169, 403-433 (1954)**[16]**-,*An approximate equation for the correlation function connected with a non-linear problem*, in*Proceedings of the eighth international congress for applied mechanics*(University of Istanbul, Turkey)**2**, 89-103 (1955)**[17]**-,*A model for one-dimensional compressible turbulence with two sets of characteristics*, Proc. Roy. Neth. Acad. Sci. Amsterdam**B58**, 1-18 (1955)**[18]**-,*Statistical problems connected with the solution of a nonlinear partial differential equation*, in*Nonlinear problems of engineering*(W. F. Ames, editor), Academic Press, New York, 1964, pp. 123-137 MR**0175430****[19]**-,*Functions and integrals connected with solutions of the diffusion or heat flow equation*, Tech. Note BN-398, The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 96 pages (1965)**[20]**C.-W. Chu,*A class of reducible systems of quasi-linear partial differential equations*, Quart. Appl. Math.**23**, 257-278 (1965) MR**0186937****[21]**J. D. Cole,*On a quasi-linear parabolic equation occurring in aerodynamics*, Quart. Appl. Math.**9**, 225-236 (1951) MR**0042889****[22]**D. H. Cooper,*Integrated treatment of tracing and tracking error*, J. Audio Eng. Soc.**12**, 2-7 (1964)**[23]**S. Crow and G. Canavan,*Relationship between a Wiener-Hermite expansion and an energy cascade*, J. Fluid Mech.**41**, 387-403 (1970)**[24]**R. D. Fay,*Plane sound waves of finite amplitude*, J. Acoust. Soc. Amer.**3**,222-241 (1931)**[25]**E. Fubini-Ghiron,*Anomalie nella propagazione di onde acustiche di grande ampiezza*, Alta Frequenza**4**, 530-581 (1935)**[26]**A. Giorgini,*A numerical experiment on a turbulence model*, in*Developments in mechanics*, Johnson Publishing Co., 1968, pp. 1379-1408**[27]**Z. A. Goldberg,*Finite-amplitude waves in magnetohydrodynamics*, Soviet Physics JETP**15**, 179-181 (1962)**[28]**L. E. Hargrove,*Fourier series for the finite amplitude sound waveform in a dissipationless medium*, J. Acoust. Soc. Amer.**32**, 511-512 (1960)**[29]**W. D. Hayes,*The basic theory of gasdynamic discontinuities*, Chapter D in*Fundamentals of gas dynamics*(H. W. Emmons, editior), Princeton Univ. Press, Princeton, 1958, pp. 416-481 MR**0097215****[30]**E. Hopf,*The partial differential equation*. Comm. Pure Appl. Math.**3**, 201-230 (1950) MR**0047234****[31]**I. Hosokawa and K. Yamamoto,*Numerical study of the Burgers model of turbulence based on the characteristic functional formalism*, Phys. Fluids**13**, 1683-1692 (1970)**[32]**D. T. Jeng, R. Foerster, S. Haaland and W. C. Meecham,*Statistical initial-value problem for Burgers' model equation of turbulence*, Phys. Fluids**9**, 2114-2120 (1966)**[33]**W.-H Kahng and A. Siegel,*The Cameron-Martin-Wiener method in turbulence and in Burgers' model: general formulae, and application to late decay*, J. Fluid Mech.**41**, 593-618 (1970) MR**0278617****[34]**W. Keck and R. T. Beyer,*Frequency spectrum of finite amplitude ultrasonic waves in liquids*, Phys. Fluids**3**, 346-352 (1960) MR**0121003****[35]**N. N. Kochina,*On periodic solutions of Burgers' equation*, J. Appl. Math, and Mech.**25**, 1597-1607 (1961) MR**0185286****[36]**R. H. Kraichnan,*Langrangian-history statistical theory for Burgers' equation*, Phys. Fluids**11**, 265-277 (1968)**[37]**M. D. Kruskal and N. J. Zabusky,*Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations*, J. Math. Phys.**5**, 231-244 (1964) MR**0161029****[38]**P. A. Lagerstrom, J. D. Cole and L. Trilling,*Problems in the theory of viscous compressible fluids*, Calif. Inst. Tech., 232 pages (1949) MR**0041617****[39]**W. Lick,*The propagation of disturbances on glaciers*, J. Geophys. Res.**75**, 2189-2197 (1970)**[40]**M. J. Lighthill,*Viscosity effects in sound waves of finite amplitude*, in*Surveys in mechanics*(G. K. Batchelor and R. M. Davies, editors), Cambridge Univ. Press, Cambridge, 1956, pp. 250-351 MR**0077346****[41]**W. C. Meecham and A. Siegel,*Wiener-Hermite expansion in model turbulence at large Reynolds numbers*, Phys. Fluids**7**, 1178-1190 (1964) MR**0167097****[42]**-, and M.-Y. Su,*Prediction of equilibrium properties for nearly normal model turbulence*, Phys. Fluids**12**, 1582-1591 (1968)**[43]**J. S. Mendousse,*Nonlinear dissipative distortion of progressive sound waves at moderate amplitude*, J. Acoust. Soc. Amer.**25**, 51-54 (1953)**[44]**C. N. K. Mooers,*Gerstner wave's Fourier decomposition and related identities*, J. Geophys. Res.**73**, 5843-5847 (1968)**[45]**Y. Ogura,*A note on the energy transfer in Burgers' model of turbulence*, 75th Anniversary Volume of the Journal of the Meteorological Society of Japan, 1957, pp. 92-94**[46]**S. A. Orszag and L. R. Bissonnette,*Dynamical properties of truncated Wiener-Hermite expansions*, Phys. Fluids**10**, 2603-2613 (1967)**[47]**G. W. Platzman,*An exact integral of complete spectral equations for unsteady one-dimensional flow*, Tellus**16**, 422-431 (1964)**[48]**L. A. Pospelov,*Propagation of finite-amplitude elastic waves*, Soviet Physics Acoust.**11**, 302-304 (1966)**[49]**W. H. Reid,*On the transfer of energy in Burgers' model of turbulence*, Appl. Sci. Res.**A6**, 85-91 (1956) MR**0083324****[50]**E. Y. Rodin,*Propagation of waves of finite amplitude in thermoviscous media*, NASA CR-643, 82 pages(1966)**[51]**-,*A Riccati solution for Burgers' equation*, Quart. Appl. Math.**27**, 541-545 (1970) MR**0259394****[52]**-,*On some approximate and exact solutions of boundary value problems for Burgers' equation*, J. Math. Anal. Appl.**30**, 401-414 (1970) MR**0257586****[53]**I. Rudnick,*On the attenuation of a repeated sawtooth shock wave*, J. Acoust. Soc. Amer.**25**, 1012-1013 (1953)**[54]**P. G. Saffman,*Lectures on homogeneous turbulence*, in*Topics in nonlinear physics*(N. J. Zabusky, editor), Springer-Verlag New York, 1968, pp. 485-614**[55]**M. E. Shvets and V. P. Meleshko,*Numerical algorithm of a solution of the system of equations of hydrodynamics of the atmosphere*, Izv. Acad. Sci. USSR Atmospher. Ocean. Phys.**1**, 519-520 (1965)**[56]**A. Siegel, T. Imamura and W. C. Meecham,*Wiener-Hermite functional expansion in turbulence with the Burgers model*, Phys. Fluids**6**, 1519-1521 (1963)**[57]**-,*Wiener-Hermite expansion in model turbulence in the late decay stage*, J. Math. Phys.**6**, 707-721 (1965) MR**0175174****[58]**S. I. Soluyan and R. V. Khokhlov,*Decay of finite-amplitude acoustic waves in a dissipative medium*(in Russian), Vestnik Moskov. Univ. Ser. III Fiz. Astronam.**3**, 52-61 (1961) MR**0153253****[59]**C. H. Su and C. S. Gardner,*Korteweg-de Vries equation and generalizations III: Derivation of the Korteweg-de Vries equation and Burgers equation*, J. Math. Phys.**10**, 536-539 (1969) MR**0271526****[60]**T. Tatsumi,*Nonlinear wave expansion for turbulence in the Burgers model of a fluid*, Phys. Fluids**12**(Part II), II 258-II 264 (1969)**[61]**G. I. Taylor,*The conditions necessary for discontinuous motion in gases*, Proc. Roy. Soc.**A84**, 371-377 (1910)**[62]**B. van der Pol,*On a non-linear partial differential equation satisfied by the logarithm of the Jacobean theta-functions, with arithmetical applications*, Proc. Acad. Sci. Amsterdam**A13**, 261-284 (1951)**[63]**R. A. Walsh,*Initial value problems associated with Burgers' equation*(Sc. D. Thesis), Report No. AM-68-2, Washington University, St. Louis, Mo., 107 pages (1968) MR**2617602****[64]**J. J. Walton,*Integration of the Lagrangian-history approximation to Burgers' equation*, Phys. Fluids**13**, 1634-1635 (1970)**[65]**P. J. Westervelt,*The mean pressure and velocity in a plane acoustic wave in a gas*, J. Acoust. Soc. Amer.**22**, 319-327 (1950) MR**0036644****[66]**N. J. Zabusky,*Phenomena associated with the oscillations of a nonlinear model string: The problem of Fermi, Pasta, and Ulam*, in*Proceedings of the conference on mathematical models in the physical sciences*(S. Drobot, editor), Prentice Hall, New York, 1963, pp. 99-133**[67]**P. A. Blythe,*Non-linear wave propagation in a relaxing gas*, J. Fluid Mech.**37**, 31-50 (1969)**[68]**J. G. Jones,*On the near-equilibrium and near-frozen regions in an expansion wave in a relaxing gas*, J. Fluid Mech.**19**, 81-102 (1964) MR**0163556****[69]**W. Lick,*Nonlinear wave propagation in fluids*, in*Annual reviews of fluid mechanics***2**, (M. van Dyke, W. G. Vincenti, and J. V. Wehausen, editors), Annual Reviews Inc., Palo Alto, California, 1970, pp. 113-136**[70]**J. P. Moran and S. F. Shen,*On the formation of weak plane shock waves by impulsive motion of a piston*, J. Fluid Mech.**25**, 705-718 (1966)**[71]**M. Morduchow and A. J. Paullay,*Stability of normal shock waves with viscosity and heat conduction*, Phys. Fluids**14**, 323-331 (1971)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q99

Retrieve articles in all journals with MSC: 35Q99

Additional Information

DOI:
https://doi.org/10.1090/qam/306736

Article copyright:
© Copyright 1972
American Mathematical Society