A table of solutions of the one-dimensional Burgers equation

Authors:
Edward R. Benton and George W. Platzman

Journal:
Quart. Appl. Math. **30** (1972), 195-212

MSC:
Primary 35Q99

DOI:
https://doi.org/10.1090/qam/306736

MathSciNet review:
306736

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The literature relating to the one-dimensional Burgers equation is surveyed. About thirty-five distinct solutions of this equation are classified in tabular form. The physically interesting cases are illustrated by means of isochronal graphs.

**[1]**W. F. Ames,*Nonlinear partial differential equations in engineering*, Academic Press, New York-London, 1965. MR**0210342****[2]**Edwin D. Banta,*Lossless propagation of one-dimensional, finite amplitude sound waves*, J. Math. Anal. Appl.**10**(1965), 116–173. MR**0170575**, https://doi.org/10.1016/0022-247X(65)90153-8**[3]**J. Bass,*Les fonctions pseudo-aléatoires*, Mémor. Sci. Math., Fasc. CLIII, Gauthier-Villars, Éditeur-Imprimeur-Libraire, Paris, 1962 (French). MR**0147847****[4]**H. Bateman,*Some recent researches on the motion of fluids*, Mon. Weather Rev.**43**, 163-170 (1915)**[5]**R. Bellman, S. P. Azen, and J. M. Richardson,*On new and direct computational approaches to some mathematical models of turbulence*, Quart. Appl. Math.**23**(1965), 55–67. MR**0178672**, https://doi.org/10.1090/S0033-569X-1965-0178672-3**[6]**E. R. Benton,*Some new exact, viscous, nonsteady solutions of Burgers' equation*, Phys. Fluids**9**, 1247-48 (1966)**[7]**-,*Solutions illustrating the decay of dissipation layers in Burgers' nonlinear diffusion equation*, Phys. Fluids**10**, 2113-19 (1967)**[8]**D. T. Blackstock,*Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves*, J. Acoust. Soc. Amer.**36**, 534-542 (1964)**[9]**David T. Blackstock,*Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude*, J. Acoust. Soc. Amer.**39**(1966), 1019–1026. MR**0198801**, https://doi.org/10.1121/1.1909986**[10]**J. M. Burgers,*Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion*, Trans. Roy. Neth. Acad. Sci. Amsterdam,**17**, 1-53 (1939)**[11]**J. M. Burgers,*Application of a model system to illustrate some points of the statistical theory of free turbulence*, Nederl. Akad. Wetensch., Proc.**43**(1940), 2–12. MR**0001147****[12]**J. M. Burgers,*A mathematical model illustrating the theory of turbulence*, Advances in Applied Mechanics, Academic Press, Inc., New York, N. Y., 1948, pp. 171–199. edited by Richard von Mises and Theodore von Kármán,. MR**0027195****[13]**J. M. Burgers,*The formation of vortex sheets in a simplified type of turbulent motion*, Nederl. Akad. Wetensch., Proc.**53**(1950), 122–133. MR**0034671****[14]**J. M. Burgers,*Correlation problems in a one-dimensional model of turbulence. I*, Nederl. Akad. Wetensch., Proc.**53**(1950), 247–260. MR**0035581****[15]**-,*Statistical problems connected with the solution of a simple non-linear partial differential equation*, Proc. Roy. Neth. Acad. Sci. Amsterdam**B57**, 45-72, 159-169, 403-433 (1954)**[16]**-,*An approximate equation for the correlation function connected with a non-linear problem*, in*Proceedings of the eighth international congress for applied mechanics*(University of Istanbul, Turkey)**2**, 89-103 (1955)**[17]**-,*A model for one-dimensional compressible turbulence with two sets of characteristics*, Proc. Roy. Neth. Acad. Sci. Amsterdam**B58**, 1-18 (1955)**[18]**J. M. Burgers,*Statistical problems connected with the solution of a nonlinear partial differential equation*, Nonlinear Problems of Engineering, Academic Press, New York, 1964, pp. 123–137. MR**0175430****[19]**-,*Functions and integrals connected with solutions of the diffusion or heat flow equation*, Tech. Note BN-398, The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 96 pages (1965)**[20]**Chong-wei Chu,*A class of reducible systems of quasi-linear partial differential equations*, Quart. Appl. Math.**23**(1965), 275–278. MR**0186937**, https://doi.org/10.1090/S0033-569X-1965-0186937-X**[21]**Julian D. Cole,*On a quasi-linear parabolic equation occurring in aerodynamics*, Quart. Appl. Math.**9**(1951), 225–236. MR**0042889**, https://doi.org/10.1090/S0033-569X-1951-42889-X**[22]**D. H. Cooper,*Integrated treatment of tracing and tracking error*, J. Audio Eng. Soc.**12**, 2-7 (1964)**[23]**S. Crow and G. Canavan,*Relationship between a Wiener-Hermite expansion and an energy cascade*, J. Fluid Mech.**41**, 387-403 (1970)**[24]**R. D. Fay,*Plane sound waves of finite amplitude*, J. Acoust. Soc. Amer.**3**,222-241 (1931)**[25]**E. Fubini-Ghiron,*Anomalie nella propagazione di onde acustiche di grande ampiezza*, Alta Frequenza**4**, 530-581 (1935)**[26]**A. Giorgini,*A numerical experiment on a turbulence model*, in*Developments in mechanics*, Johnson Publishing Co., 1968, pp. 1379-1408**[27]**Z. A. Goldberg,*Finite-amplitude waves in magnetohydrodynamics*, Soviet Physics JETP**15**, 179-181 (1962)**[28]**L. E. Hargrove,*Fourier series for the finite amplitude sound waveform in a dissipationless medium*, J. Acoust. Soc. Amer.**32**, 511-512 (1960)**[29]**Wallace D. Hayes,*The basic theory of gasdynamic discontinuities. Fundamentals of gas dynamics. Vol 3*, Princeton University Press, Princeton, N.J., 1958. MR**0097215****[30]**Eberhard Hopf,*The partial differential equation 𝑢_{𝑡}+𝑢𝑢ₓ=𝜇𝑢ₓₓ*, Comm. Pure Appl. Math.**3**(1950), 201–230. MR**0047234**, https://doi.org/10.1002/cpa.3160030302**[31]**I. Hosokawa and K. Yamamoto,*Numerical study of the Burgers model of turbulence based on the characteristic functional formalism*, Phys. Fluids**13**, 1683-1692 (1970)**[32]**D. T. Jeng, R. Foerster, S. Haaland and W. C. Meecham,*Statistical initial-value problem for Burgers' model equation of turbulence*, Phys. Fluids**9**, 2114-2120 (1966)**[33]**W. Kahng and A. Siegel,*The Cameron-Martin-Wiener method in turbulence and in Burgers’ model: General formulae, and application to late decay*, J. Fluid Mech.**41**(1970), 593–618. MR**0278617**, https://doi.org/10.1017/S0022112070000770**[34]**Winfield Keck and Robert T. Beyer,*Frequency spectrum of finite amplitude ultrasonic waves in liquids.*, Phys. Fluids**3**(1960), 346–352. MR**0121003**, https://doi.org/10.1063/1.1706039**[35]**N. N. Kočina,*On periodic solutions of Burgers’ equation*, J. Appl. Math. Mech.**25**(1962), 1597–1607. MR**0185286**, https://doi.org/10.1016/0021-8928(62)90138-7**[36]**R. H. Kraichnan,*Langrangian-history statistical theory for Burgers' equation*, Phys. Fluids**11**, 265-277 (1968)**[37]**Martin D. Kruskal and Norman J. Zabusky,*Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations*, J. Mathematical Phys.**5**(1964), 231–244. MR**0161029**, https://doi.org/10.1063/1.1704113**[38]**Paco A. Lagerstrom, Julian D. Cole, and Leon Trilling,*Problems in the Theory of Viscous Compressible Fluids*, California Institute of Technology, Pasadena, California, 1949. MR**0041617****[39]**W. Lick,*The propagation of disturbances on glaciers*, J. Geophys. Res.**75**, 2189-2197 (1970)**[40]**M. J. Lighthill,*Viscosity effects in sound waves of finite amplitude*, Surveys in mechanics, Cambridge, at the University Press, 1956, pp. 250–351 (2 plates). MR**0077346****[41]**William C. Meecham and Armand Siegel,*Wiener-Hermite expansion in model turbulence at large Reynolds numbers*, Phys. Fluids**7**(1964), 1178–1190. MR**0167097**, https://doi.org/10.1063/1.1711359**[42]**-, and M.-Y. Su,*Prediction of equilibrium properties for nearly normal model turbulence*, Phys. Fluids**12**, 1582-1591 (1968)**[43]**J. S. Mendousse,*Nonlinear dissipative distortion of progressive sound waves at moderate amplitude*, J. Acoust. Soc. Amer.**25**, 51-54 (1953)**[44]**C. N. K. Mooers,*Gerstner wave's Fourier decomposition and related identities*, J. Geophys. Res.**73**, 5843-5847 (1968)**[45]**Y. Ogura,*A note on the energy transfer in Burgers' model of turbulence*, 75th Anniversary Volume of the Journal of the Meteorological Society of Japan, 1957, pp. 92-94**[46]**S. A. Orszag and L. R. Bissonnette,*Dynamical properties of truncated Wiener-Hermite expansions*, Phys. Fluids**10**, 2603-2613 (1967)**[47]**G. W. Platzman,*An exact integral of complete spectral equations for unsteady one-dimensional flow*, Tellus**16**, 422-431 (1964)**[48]**L. A. Pospelov,*Propagation of finite-amplitude elastic waves*, Soviet Physics Acoust.**11**, 302-304 (1966)**[49]**W. H. Reid,*On the transfer of energy in Burgers’ model of turbulence*, Appl. Sci. Res. A.**6**(1956), 85–91. MR**0083324****[50]**E. Y. Rodin,*Propagation of waves of finite amplitude in thermoviscous media*, NASA CR-643, 82 pages(1966)**[51]**Ervin Y. Rodin,*A Riccati solution for Burgers’ equation*, Quart. Appl. Math.**27**(1969/1970), 541–545. MR**0259394**, https://doi.org/10.1090/S0033-569X-1970-0259394-3**[52]**Ervin Y. Rodin,*On some approximate and exact solutions of boundary value problems for Burgers’ equation*, J. Math. Anal. Appl.**30**(1970), 401–414. MR**0257586**, https://doi.org/10.1016/0022-247X(70)90171-X**[53]**I. Rudnick,*On the attenuation of a repeated sawtooth shock wave*, J. Acoust. Soc. Amer.**25**, 1012-1013 (1953)**[54]**P. G. Saffman,*Lectures on homogeneous turbulence*, in*Topics in nonlinear physics*(N. J. Zabusky, editor), Springer-Verlag New York, 1968, pp. 485-614**[55]**M. E. Shvets and V. P. Meleshko,*Numerical algorithm of a solution of the system of equations of hydrodynamics of the atmosphere*, Izv. Acad. Sci. USSR Atmospher. Ocean. Phys.**1**, 519-520 (1965)**[56]**A. Siegel, T. Imamura and W. C. Meecham,*Wiener-Hermite functional expansion in turbulence with the Burgers model*, Phys. Fluids**6**, 1519-1521 (1963)**[57]**Armand Siegel, Tsutomu Imamura, and William C. Meecham,*Wiener-Hermite expansion in model turbulence in the late decay stage*, J. Mathematical Phys.**6**(1965), 707–721. MR**0175174**, https://doi.org/10.1063/1.1704328**[58]**S. I. Soluyan and R. V. Khokhlov,*Finite amplitude acoustic waves in a relaxing medium*, Soviet Physics Acoust.**8**(1962), 170–175. MR**0153253****[59]**C. H. Su and C. S. Gardner,*Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation*, J. Mathematical Phys.**10**(1969), 536–539. MR**0271526**, https://doi.org/10.1063/1.1664873**[60]**T. Tatsumi,*Nonlinear wave expansion for turbulence in the Burgers model of a fluid*, Phys. Fluids**12**(Part II), II 258-II 264 (1969)**[61]**G. I. Taylor,*The conditions necessary for discontinuous motion in gases*, Proc. Roy. Soc.**A84**, 371-377 (1910)**[62]**B. van der Pol,*On a non-linear partial differential equation satisfied by the logarithm of the Jacobean theta-functions, with arithmetical applications*, Proc. Acad. Sci. Amsterdam**A13**, 261-284 (1951)**[63]**Robert Aubrey Walsh,*INITIAL VALUE PROBLEMS ASSOCIATED WITH BURGERS’ EQUATION*, ProQuest LLC, Ann Arbor, MI, 1968. Thesis (S.C.D.C.)–Washington University in St. Louis. MR**2617602****[64]**J. J. Walton,*Integration of the Lagrangian-history approximation to Burgers' equation*, Phys. Fluids**13**, 1634-1635 (1970)**[65]**Peter J. Westervelt,*The mean pressure and velocity in a plane acoustic wave in a gas*, J. Acoust. Soc. Amer.**22**(1950), 319–327. MR**0036644**, https://doi.org/10.1121/1.1906606**[66]**N. J. Zabusky,*Phenomena associated with the oscillations of a nonlinear model string: The problem of Fermi, Pasta, and Ulam*, in*Proceedings of the conference on mathematical models in the physical sciences*(S. Drobot, editor), Prentice Hall, New York, 1963, pp. 99-133**[67]**P. A. Blythe,*Non-linear wave propagation in a relaxing gas*, J. Fluid Mech.**37**, 31-50 (1969)**[68]**J. G. Jones,*On the near-equilibrium and near-frozen regions in an expansion wave in a relaxing gas*, J. Fluid Mech.**19**(1964), 81–102. MR**0163556**, https://doi.org/10.1017/S0022112064000556**[69]**W. Lick,*Nonlinear wave propagation in fluids*, in*Annual reviews of fluid mechanics***2**, (M. van Dyke, W. G. Vincenti, and J. V. Wehausen, editors), Annual Reviews Inc., Palo Alto, California, 1970, pp. 113-136**[70]**J. P. Moran and S. F. Shen,*On the formation of weak plane shock waves by impulsive motion of a piston*, J. Fluid Mech.**25**, 705-718 (1966)**[71]**M. Morduchow and A. J. Paullay,*Stability of normal shock waves with viscosity and heat conduction*, Phys. Fluids**14**, 323-331 (1971)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q99

Retrieve articles in all journals with MSC: 35Q99

Additional Information

DOI:
https://doi.org/10.1090/qam/306736

Article copyright:
© Copyright 1972
American Mathematical Society